1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
//! Constants for the `f128` quadruple-precision floating point type.
//!
//! *[See also the `f128` primitive type][f128].*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
//!
//! For the constants defined directly in this module
//! (as distinct from those defined in the `consts` sub-module),
//! new code should instead use the associated constants
//! defined directly on the `f128` type.

#![unstable(feature = "f128", issue = "116909")]

use crate::mem;

/// Basic mathematical constants.
#[unstable(feature = "f128", issue = "116909")]
pub mod consts {
    // FIXME: replace with mathematical constants from cmath.

    /// Archimedes' constant (π)
    #[unstable(feature = "f128", issue = "116909")]
    pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;

    /// The full circle constant (τ)
    ///
    /// Equal to 2π.
    #[unstable(feature = "f128", issue = "116909")]
    pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;

    /// The golden ratio (φ)
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128;

    /// The Euler-Mascheroni constant (γ)
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128;

    /// π/2
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;

    /// π/3
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;

    /// π/4
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;

    /// π/6
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;

    /// π/8
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;

    /// 1/π
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;

    /// 1/sqrt(π)
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const FRAC_1_SQRT_PI: f128 =
        0.564189583547756286948079451560772585844050629328998856844086_f128;

    /// 1/sqrt(2π)
    #[doc(alias = "FRAC_1_SQRT_TAU")]
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const FRAC_1_SQRT_2PI: f128 =
        0.398942280401432677939946059934381868475858631164934657665926_f128;

    /// 2/π
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;

    /// 2/sqrt(π)
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_2_SQRT_PI: f128 =
        1.12837916709551257389615890312154517168810125865799771368817_f128;

    /// sqrt(2)
    #[unstable(feature = "f128", issue = "116909")]
    pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;

    /// 1/sqrt(2)
    #[unstable(feature = "f128", issue = "116909")]
    pub const FRAC_1_SQRT_2: f128 =
        0.707106781186547524400844362104849039284835937688474036588340_f128;

    /// sqrt(3)
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128;

    /// 1/sqrt(3)
    #[unstable(feature = "f128", issue = "116909")]
    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
    pub const FRAC_1_SQRT_3: f128 =
        0.577350269189625764509148780501957455647601751270126876018602_f128;

    /// Euler's number (e)
    #[unstable(feature = "f128", issue = "116909")]
    pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;

    /// log<sub>2</sub>(10)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;

    /// log<sub>2</sub>(e)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;

    /// log<sub>10</sub>(2)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;

    /// log<sub>10</sub>(e)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;

    /// ln(2)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128;

    /// ln(10)
    #[unstable(feature = "f128", issue = "116909")]
    pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
}

#[cfg(not(test))]
impl f128 {
    // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
    // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.

    /// The radix or base of the internal representation of `f128`.
    #[unstable(feature = "f128", issue = "116909")]
    pub const RADIX: u32 = 2;

    /// Number of significant digits in base 2.
    #[unstable(feature = "f128", issue = "116909")]
    pub const MANTISSA_DIGITS: u32 = 113;

    /// Approximate number of significant digits in base 10.
    ///
    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
    /// significant digits can be converted to `f128` and back without loss.
    ///
    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
    ///
    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
    #[unstable(feature = "f128", issue = "116909")]
    pub const DIGITS: u32 = 33;

    /// [Machine epsilon] value for `f128`.
    ///
    /// This is the difference between `1.0` and the next larger representable number.
    ///
    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
    ///
    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
    #[unstable(feature = "f128", issue = "116909")]
    pub const EPSILON: f128 = 1.92592994438723585305597794258492731e-34_f128;

    /// Smallest finite `f128` value.
    ///
    /// Equal to &minus;[`MAX`].
    ///
    /// [`MAX`]: f128::MAX
    #[unstable(feature = "f128", issue = "116909")]
    pub const MIN: f128 = -1.18973149535723176508575932662800701e+4932_f128;
    /// Smallest positive normal `f128` value.
    ///
    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
    ///
    /// [`MIN_EXP`]: f128::MIN_EXP
    #[unstable(feature = "f128", issue = "116909")]
    pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128;
    /// Largest finite `f128` value.
    ///
    /// Equal to
    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
    ///
    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
    /// [`MAX_EXP`]: f128::MAX_EXP
    #[unstable(feature = "f128", issue = "116909")]
    pub const MAX: f128 = 1.18973149535723176508575932662800701e+4932_f128;

    /// One greater than the minimum possible normal power of 2 exponent.
    ///
    /// If <i>x</i>&nbsp;=&nbsp;`MIN_EXP`, then normal numbers
    /// ≥&nbsp;0.5&nbsp;×&nbsp;2<sup><i>x</i></sup>.
    #[unstable(feature = "f128", issue = "116909")]
    pub const MIN_EXP: i32 = -16_381;
    /// Maximum possible power of 2 exponent.
    ///
    /// If <i>x</i>&nbsp;=&nbsp;`MAX_EXP`, then normal numbers
    /// &lt;&nbsp;1&nbsp;×&nbsp;2<sup><i>x</i></sup>.
    #[unstable(feature = "f128", issue = "116909")]
    pub const MAX_EXP: i32 = 16_384;

    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
    ///
    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
    ///
    /// [`MIN_POSITIVE`]: f128::MIN_POSITIVE
    #[unstable(feature = "f128", issue = "116909")]
    pub const MIN_10_EXP: i32 = -4_931;
    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
    ///
    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
    ///
    /// [`MAX`]: f128::MAX
    #[unstable(feature = "f128", issue = "116909")]
    pub const MAX_10_EXP: i32 = 4_932;

    /// Returns `true` if this value is NaN.
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
    pub const fn is_nan(self) -> bool {
        self != self
    }

    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
    /// positive sign bit and positive infinity. Note that IEEE 754 doesn't assign any
    /// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
    /// the bit pattern of NaNs are conserved over arithmetic operations, the result of
    /// `is_sign_positive` on a NaN might produce an unexpected result in some cases.
    /// See [explanation of NaN as a special value](f32) for more info.
    ///
    /// ```
    /// #![feature(f128)]
    ///
    /// let f = 7.0_f128;
    /// let g = -7.0_f128;
    ///
    /// assert!(f.is_sign_positive());
    /// assert!(!g.is_sign_positive());
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub fn is_sign_positive(self) -> bool {
        !self.is_sign_negative()
    }

    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
    /// negative sign bit and negative infinity. Note that IEEE 754 doesn't assign any
    /// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
    /// the bit pattern of NaNs are conserved over arithmetic operations, the result of
    /// `is_sign_negative` on a NaN might produce an unexpected result in some cases.
    /// See [explanation of NaN as a special value](f32) for more info.
    ///
    /// ```
    /// #![feature(f128)]
    ///
    /// let f = 7.0_f128;
    /// let g = -7.0_f128;
    ///
    /// assert!(!f.is_sign_negative());
    /// assert!(g.is_sign_negative());
    /// ```
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub fn is_sign_negative(self) -> bool {
        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
        // applies to zeros and NaNs as well.
        // SAFETY: This is just transmuting to get the sign bit, it's fine.
        (self.to_bits() & (1 << 127)) != 0
    }

    /// Raw transmutation to `u128`.
    ///
    /// This is currently identical to `transmute::<f128, u128>(self)` on all platforms.
    ///
    /// See [`from_bits`](#method.from_bits) for some discussion of the
    /// portability of this operation (there are almost no issues).
    ///
    /// Note that this function is distinct from `as` casting, which attempts to
    /// preserve the *numeric* value, and not the bitwise value.
    #[inline]
    #[unstable(feature = "f128", issue = "116909")]
    #[must_use = "this returns the result of the operation, without modifying the original"]
    pub fn to_bits(self) -> u128 {
        // SAFETY: `u128` is a plain old datatype so we can always... uh...
        // ...look, just pretend you forgot what you just read.
        // Stability concerns.
        unsafe { mem::transmute(self) }
    }

    /// Raw transmutation from `u128`.
    ///
    /// This is currently identical to `transmute::<u128, f128>(v)` on all platforms.
    /// It turns out this is incredibly portable, for two reasons:
    ///
    /// * Floats and Ints have the same endianness on all supported platforms.
    /// * IEEE 754 very precisely specifies the bit layout of floats.
    ///
    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
    /// (notably x86 and ARM) picked the interpretation that was ultimately
    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
    ///
    /// Rather than trying to preserve signaling-ness cross-platform, this
    /// implementation favors preserving the exact bits. This means that
    /// any payloads encoded in NaNs will be preserved even if the result of
    /// this method is sent over the network from an x86 machine to a MIPS one.
    ///
    /// If the results of this method are only manipulated by the same
    /// architecture that produced them, then there is no portability concern.
    ///
    /// If the input isn't NaN, then there is no portability concern.
    ///
    /// If you don't care about signalingness (very likely), then there is no
    /// portability concern.
    ///
    /// Note that this function is distinct from `as` casting, which attempts to
    /// preserve the *numeric* value, and not the bitwise value.
    #[inline]
    #[must_use]
    #[unstable(feature = "f128", issue = "116909")]
    pub fn from_bits(v: u128) -> Self {
        // SAFETY: `u128 is a plain old datatype so we can always... uh...
        // ...look, just pretend you forgot what you just read.
        // Stability concerns.
        unsafe { mem::transmute(v) }
    }
}