1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
//! Streaming SIMD Extensions (SSE)

use crate::{
    core_arch::{simd::*, x86::*},
    intrinsics::simd::*,
    mem, ptr,
};

#[cfg(test)]
use stdarch_test::assert_instr;

/// Adds the first component of `a` and `b`, the other components are copied
/// from `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(addss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_add_ss(a: __m128, b: __m128) -> __m128 {
    addss(a, b)
}

/// Adds __m128 vectors.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(addps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_add_ps(a: __m128, b: __m128) -> __m128 {
    simd_add(a, b)
}

/// Subtracts the first component of `b` from `a`, the other components are
/// copied from `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(subss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sub_ss(a: __m128, b: __m128) -> __m128 {
    subss(a, b)
}

/// Subtracts __m128 vectors.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(subps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sub_ps(a: __m128, b: __m128) -> __m128 {
    simd_sub(a, b)
}

/// Multiplies the first component of `a` and `b`, the other components are
/// copied from `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(mulss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_mul_ss(a: __m128, b: __m128) -> __m128 {
    mulss(a, b)
}

/// Multiplies __m128 vectors.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(mulps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_mul_ps(a: __m128, b: __m128) -> __m128 {
    simd_mul(a, b)
}

/// Divides the first component of `b` by `a`, the other components are
/// copied from `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(divss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_div_ss(a: __m128, b: __m128) -> __m128 {
    divss(a, b)
}

/// Divides __m128 vectors.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(divps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_div_ps(a: __m128, b: __m128) -> __m128 {
    simd_div(a, b)
}

/// Returns the square root of the first single-precision (32-bit)
/// floating-point element in `a`, the other elements are unchanged.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(sqrtss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sqrt_ss(a: __m128) -> __m128 {
    sqrtss(a)
}

/// Returns the square root of packed single-precision (32-bit) floating-point
/// elements in `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(sqrtps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sqrt_ps(a: __m128) -> __m128 {
    sqrtps(a)
}

/// Returns the approximate reciprocal of the first single-precision
/// (32-bit) floating-point element in `a`, the other elements are unchanged.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(rcpss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_rcp_ss(a: __m128) -> __m128 {
    rcpss(a)
}

/// Returns the approximate reciprocal of packed single-precision (32-bit)
/// floating-point elements in `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(rcpps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_rcp_ps(a: __m128) -> __m128 {
    rcpps(a)
}

/// Returns the approximate reciprocal square root of the first single-precision
/// (32-bit) floating-point element in `a`, the other elements are unchanged.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(rsqrtss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_rsqrt_ss(a: __m128) -> __m128 {
    rsqrtss(a)
}

/// Returns the approximate reciprocal square root of packed single-precision
/// (32-bit) floating-point elements in `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(rsqrtps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_rsqrt_ps(a: __m128) -> __m128 {
    rsqrtps(a)
}

/// Compares the first single-precision (32-bit) floating-point element of `a`
/// and `b`, and return the minimum value in the first element of the return
/// value, the other elements are copied from `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(minss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_min_ss(a: __m128, b: __m128) -> __m128 {
    minss(a, b)
}

/// Compares packed single-precision (32-bit) floating-point elements in `a` and
/// `b`, and return the corresponding minimum values.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(minps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_min_ps(a: __m128, b: __m128) -> __m128 {
    // See the `test_mm_min_ps` test why this can't be implemented using `simd_fmin`.
    minps(a, b)
}

/// Compares the first single-precision (32-bit) floating-point element of `a`
/// and `b`, and return the maximum value in the first element of the return
/// value, the other elements are copied from `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(maxss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_max_ss(a: __m128, b: __m128) -> __m128 {
    maxss(a, b)
}

/// Compares packed single-precision (32-bit) floating-point elements in `a` and
/// `b`, and return the corresponding maximum values.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(maxps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_max_ps(a: __m128, b: __m128) -> __m128 {
    // See the `test_mm_min_ps` test why this can't be implemented using `simd_fmax`.
    maxps(a, b)
}

/// Bitwise AND of packed single-precision (32-bit) floating-point elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_ps)
#[inline]
#[target_feature(enable = "sse")]
// i586 only seems to generate plain `and` instructions, so ignore it.
#[cfg_attr(
    all(test, any(target_arch = "x86_64", target_feature = "sse2")),
    assert_instr(andps)
)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_and_ps(a: __m128, b: __m128) -> __m128 {
    let a: __m128i = mem::transmute(a);
    let b: __m128i = mem::transmute(b);
    mem::transmute(simd_and(a, b))
}

/// Bitwise AND-NOT of packed single-precision (32-bit) floating-point
/// elements.
///
/// Computes `!a & b` for each bit in `a` and `b`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_ps)
#[inline]
#[target_feature(enable = "sse")]
// i586 only seems to generate plain `not` and `and` instructions, so ignore
// it.
#[cfg_attr(
    all(test, any(target_arch = "x86_64", target_feature = "sse2")),
    assert_instr(andnps)
)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_andnot_ps(a: __m128, b: __m128) -> __m128 {
    let a: __m128i = mem::transmute(a);
    let b: __m128i = mem::transmute(b);
    let mask: __m128i = mem::transmute(i32x4::splat(-1));
    mem::transmute(simd_and(simd_xor(mask, a), b))
}

/// Bitwise OR of packed single-precision (32-bit) floating-point elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_ps)
#[inline]
#[target_feature(enable = "sse")]
// i586 only seems to generate plain `or` instructions, so we ignore it.
#[cfg_attr(
    all(test, any(target_arch = "x86_64", target_feature = "sse2")),
    assert_instr(orps)
)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_or_ps(a: __m128, b: __m128) -> __m128 {
    let a: __m128i = mem::transmute(a);
    let b: __m128i = mem::transmute(b);
    mem::transmute(simd_or(a, b))
}

/// Bitwise exclusive OR of packed single-precision (32-bit) floating-point
/// elements.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_ps)
#[inline]
#[target_feature(enable = "sse")]
// i586 only seems to generate plain `xor` instructions, so we ignore it.
#[cfg_attr(
    all(test, any(target_arch = "x86_64", target_feature = "sse2")),
    assert_instr(xorps)
)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_xor_ps(a: __m128, b: __m128) -> __m128 {
    let a: __m128i = mem::transmute(a);
    let b: __m128i = mem::transmute(b);
    mem::transmute(simd_xor(a, b))
}

/// Compares the lowest `f32` of both inputs for equality. The lowest 32 bits of
/// the result will be `0xffffffff` if the two inputs are equal, or `0`
/// otherwise. The upper 96 bits of the result are the upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpeqss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpeq_ss(a: __m128, b: __m128) -> __m128 {
    cmpss(a, b, 0)
}

/// Compares the lowest `f32` of both inputs for less than. The lowest 32 bits
/// of the result will be `0xffffffff` if `a.extract(0)` is less than
/// `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result are the
/// upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpltss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmplt_ss(a: __m128, b: __m128) -> __m128 {
    cmpss(a, b, 1)
}

/// Compares the lowest `f32` of both inputs for less than or equal. The lowest
/// 32 bits of the result will be `0xffffffff` if `a.extract(0)` is less than
/// or equal `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result
/// are the upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpless))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmple_ss(a: __m128, b: __m128) -> __m128 {
    cmpss(a, b, 2)
}

/// Compares the lowest `f32` of both inputs for greater than. The lowest 32
/// bits of the result will be `0xffffffff` if `a.extract(0)` is greater
/// than `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result
/// are the upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpltss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpgt_ss(a: __m128, b: __m128) -> __m128 {
    simd_shuffle!(a, cmpss(b, a, 1), [4, 1, 2, 3])
}

/// Compares the lowest `f32` of both inputs for greater than or equal. The
/// lowest 32 bits of the result will be `0xffffffff` if `a.extract(0)` is
/// greater than or equal `b.extract(0)`, or `0` otherwise. The upper 96 bits
/// of the result are the upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpless))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpge_ss(a: __m128, b: __m128) -> __m128 {
    simd_shuffle!(a, cmpss(b, a, 2), [4, 1, 2, 3])
}

/// Compares the lowest `f32` of both inputs for inequality. The lowest 32 bits
/// of the result will be `0xffffffff` if `a.extract(0)` is not equal to
/// `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result are the
/// upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpneqss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpneq_ss(a: __m128, b: __m128) -> __m128 {
    cmpss(a, b, 4)
}

/// Compares the lowest `f32` of both inputs for not-less-than. The lowest 32
/// bits of the result will be `0xffffffff` if `a.extract(0)` is not less than
/// `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result are the
/// upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpnltss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpnlt_ss(a: __m128, b: __m128) -> __m128 {
    cmpss(a, b, 5)
}

/// Compares the lowest `f32` of both inputs for not-less-than-or-equal. The
/// lowest 32 bits of the result will be `0xffffffff` if `a.extract(0)` is not
/// less than or equal to `b.extract(0)`, or `0` otherwise. The upper 96 bits
/// of the result are the upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpnless))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpnle_ss(a: __m128, b: __m128) -> __m128 {
    cmpss(a, b, 6)
}

/// Compares the lowest `f32` of both inputs for not-greater-than. The lowest 32
/// bits of the result will be `0xffffffff` if `a.extract(0)` is not greater
/// than `b.extract(0)`, or `0` otherwise. The upper 96 bits of the result are
/// the upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpnltss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpngt_ss(a: __m128, b: __m128) -> __m128 {
    simd_shuffle!(a, cmpss(b, a, 5), [4, 1, 2, 3])
}

/// Compares the lowest `f32` of both inputs for not-greater-than-or-equal. The
/// lowest 32 bits of the result will be `0xffffffff` if `a.extract(0)` is not
/// greater than or equal to `b.extract(0)`, or `0` otherwise. The upper 96
/// bits of the result are the upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpnless))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpnge_ss(a: __m128, b: __m128) -> __m128 {
    simd_shuffle!(a, cmpss(b, a, 6), [4, 1, 2, 3])
}

/// Checks if the lowest `f32` of both inputs are ordered. The lowest 32 bits of
/// the result will be `0xffffffff` if neither of `a.extract(0)` or
/// `b.extract(0)` is a NaN, or `0` otherwise. The upper 96 bits of the result
/// are the upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpordss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpord_ss(a: __m128, b: __m128) -> __m128 {
    cmpss(a, b, 7)
}

/// Checks if the lowest `f32` of both inputs are unordered. The lowest 32 bits
/// of the result will be `0xffffffff` if any of `a.extract(0)` or
/// `b.extract(0)` is a NaN, or `0` otherwise. The upper 96 bits of the result
/// are the upper 96 bits of `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpunordss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpunord_ss(a: __m128, b: __m128) -> __m128 {
    cmpss(a, b, 3)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// The result in the output vector will be `0xffffffff` if the input elements
/// were equal, or `0` otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpeqps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpeq_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(a, b, 0)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// The result in the output vector will be `0xffffffff` if the input element
/// in `a` is less than the corresponding element in `b`, or `0` otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpltps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmplt_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(a, b, 1)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// The result in the output vector will be `0xffffffff` if the input element
/// in `a` is less than or equal to the corresponding element in `b`, or `0`
/// otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpleps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmple_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(a, b, 2)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// The result in the output vector will be `0xffffffff` if the input element
/// in `a` is greater than the corresponding element in `b`, or `0` otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpltps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpgt_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(b, a, 1)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// The result in the output vector will be `0xffffffff` if the input element
/// in `a` is greater than or equal to the corresponding element in `b`, or `0`
/// otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpleps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpge_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(b, a, 2)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// The result in the output vector will be `0xffffffff` if the input elements
/// are **not** equal, or `0` otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpneqps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpneq_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(a, b, 4)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// The result in the output vector will be `0xffffffff` if the input element
/// in `a` is **not** less than the corresponding element in `b`, or `0`
/// otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpnltps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpnlt_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(a, b, 5)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// The result in the output vector will be `0xffffffff` if the input element
/// in `a` is **not** less than or equal to the corresponding element in `b`, or
/// `0` otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpnleps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpnle_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(a, b, 6)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// The result in the output vector will be `0xffffffff` if the input element
/// in `a` is **not** greater than the corresponding element in `b`, or `0`
/// otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpnltps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpngt_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(b, a, 5)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// The result in the output vector will be `0xffffffff` if the input element
/// in `a` is **not** greater than or equal to the corresponding element in `b`,
/// or `0` otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpnleps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpnge_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(b, a, 6)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// Returns four floats that have one of two possible bit patterns. The element
/// in the output vector will be `0xffffffff` if the input elements in `a` and
/// `b` are ordered (i.e., neither of them is a NaN), or 0 otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpordps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpord_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(b, a, 7)
}

/// Compares each of the four floats in `a` to the corresponding element in `b`.
/// Returns four floats that have one of two possible bit patterns. The element
/// in the output vector will be `0xffffffff` if the input elements in `a` and
/// `b` are unordered (i.e., at least on of them is a NaN), or 0 otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cmpunordps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cmpunord_ps(a: __m128, b: __m128) -> __m128 {
    cmpps(b, a, 3)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if they are equal, or `0` otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(comiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_comieq_ss(a: __m128, b: __m128) -> i32 {
    comieq_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if the value from `a` is less than the one from `b`, or `0` otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(comiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_comilt_ss(a: __m128, b: __m128) -> i32 {
    comilt_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if the value from `a` is less than or equal to the one from `b`, or `0`
/// otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(comiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_comile_ss(a: __m128, b: __m128) -> i32 {
    comile_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if the value from `a` is greater than the one from `b`, or `0`
/// otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(comiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_comigt_ss(a: __m128, b: __m128) -> i32 {
    comigt_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if the value from `a` is greater than or equal to the one from `b`, or
/// `0` otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(comiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_comige_ss(a: __m128, b: __m128) -> i32 {
    comige_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if they are **not** equal, or `0` otherwise.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(comiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_comineq_ss(a: __m128, b: __m128) -> i32 {
    comineq_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if they are equal, or `0` otherwise. This instruction will not signal
/// an exception if either argument is a quiet NaN.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomieq_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(ucomiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ucomieq_ss(a: __m128, b: __m128) -> i32 {
    ucomieq_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if the value from `a` is less than the one from `b`, or `0` otherwise.
/// This instruction will not signal an exception if either argument is a quiet
/// NaN.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomilt_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(ucomiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ucomilt_ss(a: __m128, b: __m128) -> i32 {
    ucomilt_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if the value from `a` is less than or equal to the one from `b`, or `0`
/// otherwise. This instruction will not signal an exception if either argument
/// is a quiet NaN.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomile_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(ucomiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ucomile_ss(a: __m128, b: __m128) -> i32 {
    ucomile_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if the value from `a` is greater than the one from `b`, or `0`
/// otherwise. This instruction will not signal an exception if either argument
/// is a quiet NaN.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomigt_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(ucomiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ucomigt_ss(a: __m128, b: __m128) -> i32 {
    ucomigt_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if the value from `a` is greater than or equal to the one from `b`, or
/// `0` otherwise. This instruction will not signal an exception if either
/// argument is a quiet NaN.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomige_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(ucomiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ucomige_ss(a: __m128, b: __m128) -> i32 {
    ucomige_ss(a, b)
}

/// Compares two 32-bit floats from the low-order bits of `a` and `b`. Returns
/// `1` if they are **not** equal, or `0` otherwise. This instruction will not
/// signal an exception if either argument is a quiet NaN.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ucomineq_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(ucomiss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_ucomineq_ss(a: __m128, b: __m128) -> i32 {
    ucomineq_ss(a, b)
}

/// Converts the lowest 32 bit float in the input vector to a 32 bit integer.
///
/// The result is rounded according to the current rounding mode. If the result
/// cannot be represented as a 32 bit integer the result will be `0x8000_0000`
/// (`i32::MIN`).
///
/// This corresponds to the `CVTSS2SI` instruction (with 32 bit output).
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cvtss2si))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtss_si32(a: __m128) -> i32 {
    cvtss2si(a)
}

/// Alias for [`_mm_cvtss_si32`](fn._mm_cvtss_si32.html).
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cvtss2si))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvt_ss2si(a: __m128) -> i32 {
    _mm_cvtss_si32(a)
}

/// Converts the lowest 32 bit float in the input vector to a 32 bit integer
/// with
/// truncation.
///
/// The result is rounded always using truncation (round towards zero). If the
/// result cannot be represented as a 32 bit integer the result will be
/// `0x8000_0000` (`i32::MIN`).
///
/// This corresponds to the `CVTTSS2SI` instruction (with 32 bit output).
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cvttss2si))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvttss_si32(a: __m128) -> i32 {
    cvttss2si(a)
}

/// Alias for [`_mm_cvttss_si32`](fn._mm_cvttss_si32.html).
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cvttss2si))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtt_ss2si(a: __m128) -> i32 {
    _mm_cvttss_si32(a)
}

/// Extracts the lowest 32 bit float from the input vector.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32)
#[inline]
#[target_feature(enable = "sse")]
// No point in using assert_instrs. In Unix x86_64 calling convention this is a
// no-op, and on Windows it's just a `mov`.
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtss_f32(a: __m128) -> f32 {
    simd_extract!(a, 0)
}

/// Converts a 32 bit integer to a 32 bit float. The result vector is the input
/// vector `a` with the lowest 32 bit float replaced by the converted integer.
///
/// This intrinsic corresponds to the `CVTSI2SS` instruction (with 32 bit
/// input).
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cvtsi2ss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvtsi32_ss(a: __m128, b: i32) -> __m128 {
    cvtsi2ss(a, b)
}

/// Alias for [`_mm_cvtsi32_ss`](fn._mm_cvtsi32_ss.html).
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(cvtsi2ss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_cvt_si2ss(a: __m128, b: i32) -> __m128 {
    _mm_cvtsi32_ss(a, b)
}

/// Construct a `__m128` with the lowest element set to `a` and the rest set to
/// zero.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_set_ss(a: f32) -> __m128 {
    __m128(a, 0.0, 0.0, 0.0)
}

/// Construct a `__m128` with all element set to `a`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(shufps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_set1_ps(a: f32) -> __m128 {
    __m128(a, a, a, a)
}

/// Alias for [`_mm_set1_ps`](fn._mm_set1_ps.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps1)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(shufps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_set_ps1(a: f32) -> __m128 {
    _mm_set1_ps(a)
}

/// Construct a `__m128` from four floating point values highest to lowest.
///
/// Note that `a` will be the highest 32 bits of the result, and `d` the
/// lowest. This matches the standard way of writing bit patterns on x86:
///
/// ```text
///  bit    127 .. 96  95 .. 64  63 .. 32  31 .. 0
///        +---------+---------+---------+---------+
///        |    a    |    b    |    c    |    d    |   result
///        +---------+---------+---------+---------+
/// ```
///
/// Alternatively:
///
/// ```text
/// let v = _mm_set_ps(d, c, b, a);
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(unpcklps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_set_ps(a: f32, b: f32, c: f32, d: f32) -> __m128 {
    __m128(d, c, b, a)
}

/// Construct a `__m128` from four floating point values lowest to highest.
///
/// This matches the memory order of `__m128`, i.e., `a` will be the lowest 32
/// bits of the result, and `d` the highest.
///
/// ```text
/// assert_eq!(__m128::new(a, b, c, d), _mm_setr_ps(a, b, c, d));
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(
    all(test, any(target_os = "windows", target_arch = "x86_64")),
    assert_instr(unpcklps)
)]
// On a 32-bit architecture on non-Windows it just copies the operands from the stack.
#[cfg_attr(
    all(test, all(not(target_os = "windows"), target_arch = "x86")),
    assert_instr(movaps)
)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_setr_ps(a: f32, b: f32, c: f32, d: f32) -> __m128 {
    __m128(a, b, c, d)
}

/// Construct a `__m128` with all elements initialized to zero.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(xorps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_setzero_ps() -> __m128 {
    __m128(0.0, 0.0, 0.0, 0.0)
}

/// A utility function for creating masks to use with Intel shuffle and
/// permute intrinsics.
#[inline]
#[allow(non_snake_case)]
#[unstable(feature = "stdarch_x86_mm_shuffle", issue = "111147")]
pub const fn _MM_SHUFFLE(z: u32, y: u32, x: u32, w: u32) -> i32 {
    ((z << 6) | (y << 4) | (x << 2) | w) as i32
}

/// Shuffles packed single-precision (32-bit) floating-point elements in `a` and
/// `b` using `MASK`.
///
/// The lower half of result takes values from `a` and the higher half from
/// `b`. Mask is split to 2 control bits each to index the element from inputs.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_ps)
///
/// Note that there appears to be a mistake within Intel's Intrinsics Guide.
/// `_mm_shuffle_ps` is supposed to take an `i32` instead of a `u32`
/// as is the case for [other shuffle intrinsics](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_).
/// Performing an implicit type conversion between an unsigned integer and a signed integer
/// does not cause a problem in C, however Rust's commitment to strong typing does not allow this.
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(shufps, MASK = 3))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_shuffle_ps<const MASK: i32>(a: __m128, b: __m128) -> __m128 {
    static_assert_uimm_bits!(MASK, 8);
    simd_shuffle!(
        a,
        b,
        [
            MASK as u32 & 0b11,
            (MASK as u32 >> 2) & 0b11,
            ((MASK as u32 >> 4) & 0b11) + 4,
            ((MASK as u32 >> 6) & 0b11) + 4,
        ],
    )
}

/// Unpacks and interleave single-precision (32-bit) floating-point elements
/// from the higher half of `a` and `b`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(unpckhps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_unpackhi_ps(a: __m128, b: __m128) -> __m128 {
    simd_shuffle!(a, b, [2, 6, 3, 7])
}

/// Unpacks and interleave single-precision (32-bit) floating-point elements
/// from the lower half of `a` and `b`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(unpcklps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_unpacklo_ps(a: __m128, b: __m128) -> __m128 {
    simd_shuffle!(a, b, [0, 4, 1, 5])
}

/// Combine higher half of `a` and `b`. The higher half of `b` occupies the
/// lower half of result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehl_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(all(test, not(target_os = "windows")), assert_instr(movhlps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_movehl_ps(a: __m128, b: __m128) -> __m128 {
    // TODO; figure why this is a different instruction on Windows?
    simd_shuffle!(a, b, [6, 7, 2, 3])
}

/// Combine lower half of `a` and `b`. The lower half of `b` occupies the
/// higher half of result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movelh_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(all(test, not(target_os = "windows")), assert_instr(movlhps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_movelh_ps(a: __m128, b: __m128) -> __m128 {
    simd_shuffle!(a, b, [0, 1, 4, 5])
}

/// Returns a mask of the most significant bit of each element in `a`.
///
/// The mask is stored in the 4 least significant bits of the return value.
/// All other bits are set to `0`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movmskps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_movemask_ps(a: __m128) -> i32 {
    // Propagate the highest bit to the rest, because simd_bitmask
    // requires all-1 or all-0.
    let mask: i32x4 = simd_lt(transmute(a), i32x4::splat(0));
    simd_bitmask::<i32x4, u8>(mask).into()
}

/// Construct a `__m128` with the lowest element read from `p` and the other
/// elements set to zero.
///
/// This corresponds to instructions `VMOVSS` / `MOVSS`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_load_ss(p: *const f32) -> __m128 {
    __m128(*p, 0.0, 0.0, 0.0)
}

/// Construct a `__m128` by duplicating the value read from `p` into all
/// elements.
///
/// This corresponds to instructions `VMOVSS` / `MOVSS` followed by some
/// shuffling.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_load1_ps(p: *const f32) -> __m128 {
    let a = *p;
    __m128(a, a, a, a)
}

/// Alias for [`_mm_load1_ps`](fn._mm_load1_ps.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_load_ps1(p: *const f32) -> __m128 {
    _mm_load1_ps(p)
}

/// Loads four `f32` values from *aligned* memory into a `__m128`. If the
/// pointer is not aligned to a 128-bit boundary (16 bytes) a general
/// protection fault will be triggered (fatal program crash).
///
/// Use [`_mm_loadu_ps`](fn._mm_loadu_ps.html) for potentially unaligned
/// memory.
///
/// This corresponds to instructions `VMOVAPS` / `MOVAPS`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movaps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[allow(clippy::cast_ptr_alignment)]
pub unsafe fn _mm_load_ps(p: *const f32) -> __m128 {
    *(p as *const __m128)
}

/// Loads four `f32` values from memory into a `__m128`. There are no
/// restrictions
/// on memory alignment. For aligned memory
/// [`_mm_load_ps`](fn._mm_load_ps.html)
/// may be faster.
///
/// This corresponds to instructions `VMOVUPS` / `MOVUPS`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movups))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_loadu_ps(p: *const f32) -> __m128 {
    // Note: Using `*p` would require `f32` alignment, but `movups` has no
    // alignment restrictions.
    let mut dst = _mm_undefined_ps();
    ptr::copy_nonoverlapping(
        p as *const u8,
        ptr::addr_of_mut!(dst) as *mut u8,
        mem::size_of::<__m128>(),
    );
    dst
}

/// Loads four `f32` values from aligned memory into a `__m128` in reverse
/// order.
///
/// If the pointer is not aligned to a 128-bit boundary (16 bytes) a general
/// protection fault will be triggered (fatal program crash).
///
/// Functionally equivalent to the following code sequence (assuming `p`
/// satisfies the alignment restrictions):
///
/// ```text
/// let a0 = *p;
/// let a1 = *p.add(1);
/// let a2 = *p.add(2);
/// let a3 = *p.add(3);
/// __m128::new(a3, a2, a1, a0)
/// ```
///
/// This corresponds to instructions `VMOVAPS` / `MOVAPS` followed by some
/// shuffling.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movaps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_loadr_ps(p: *const f32) -> __m128 {
    let a = _mm_load_ps(p);
    simd_shuffle!(a, a, [3, 2, 1, 0])
}

/// Loads unaligned 64-bits of integer data from memory into new vector.
///
/// `mem_addr` does not need to be aligned on any particular boundary.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64)
#[inline]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86_mm_loadu_si64", since = "1.46.0")]
pub unsafe fn _mm_loadu_si64(mem_addr: *const u8) -> __m128i {
    transmute(i64x2::new(ptr::read_unaligned(mem_addr as *const i64), 0))
}

/// Stores the lowest 32 bit float of `a` into memory.
///
/// This intrinsic corresponds to the `MOVSS` instruction.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_store_ss(p: *mut f32, a: __m128) {
    *p = simd_extract!(a, 0);
}

/// Stores the lowest 32 bit float of `a` repeated four times into *aligned*
/// memory.
///
/// If the pointer is not aligned to a 128-bit boundary (16 bytes) a general
/// protection fault will be triggered (fatal program crash).
///
/// Functionally equivalent to the following code sequence (assuming `p`
/// satisfies the alignment restrictions):
///
/// ```text
/// let x = a.extract(0);
/// *p = x;
/// *p.add(1) = x;
/// *p.add(2) = x;
/// *p.add(3) = x;
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movaps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[allow(clippy::cast_ptr_alignment)]
pub unsafe fn _mm_store1_ps(p: *mut f32, a: __m128) {
    let b: __m128 = simd_shuffle!(a, a, [0, 0, 0, 0]);
    *(p as *mut __m128) = b;
}

/// Alias for [`_mm_store1_ps`](fn._mm_store1_ps.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movaps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_store_ps1(p: *mut f32, a: __m128) {
    _mm_store1_ps(p, a);
}

/// Stores four 32-bit floats into *aligned* memory.
///
/// If the pointer is not aligned to a 128-bit boundary (16 bytes) a general
/// protection fault will be triggered (fatal program crash).
///
/// Use [`_mm_storeu_ps`](fn._mm_storeu_ps.html) for potentially unaligned
/// memory.
///
/// This corresponds to instructions `VMOVAPS` / `MOVAPS`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movaps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[allow(clippy::cast_ptr_alignment)]
pub unsafe fn _mm_store_ps(p: *mut f32, a: __m128) {
    *(p as *mut __m128) = a;
}

/// Stores four 32-bit floats into memory. There are no restrictions on memory
/// alignment. For aligned memory [`_mm_store_ps`](fn._mm_store_ps.html) may be
/// faster.
///
/// This corresponds to instructions `VMOVUPS` / `MOVUPS`.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movups))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_storeu_ps(p: *mut f32, a: __m128) {
    ptr::copy_nonoverlapping(
        ptr::addr_of!(a) as *const u8,
        p as *mut u8,
        mem::size_of::<__m128>(),
    );
}

/// Stores four 32-bit floats into *aligned* memory in reverse order.
///
/// If the pointer is not aligned to a 128-bit boundary (16 bytes) a general
/// protection fault will be triggered (fatal program crash).
///
/// Functionally equivalent to the following code sequence (assuming `p`
/// satisfies the alignment restrictions):
///
/// ```text
/// *p = a.extract(3);
/// *p.add(1) = a.extract(2);
/// *p.add(2) = a.extract(1);
/// *p.add(3) = a.extract(0);
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movaps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[allow(clippy::cast_ptr_alignment)]
pub unsafe fn _mm_storer_ps(p: *mut f32, a: __m128) {
    let b: __m128 = simd_shuffle!(a, a, [3, 2, 1, 0]);
    *(p as *mut __m128) = b;
}

/// Returns a `__m128` with the first component from `b` and the remaining
/// components from `a`.
///
/// In other words for any `a` and `b`:
/// ```text
/// _mm_move_ss(a, b) == a.replace(0, b.extract(0))
/// ```
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_ss)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_move_ss(a: __m128, b: __m128) -> __m128 {
    simd_shuffle!(a, b, [4, 1, 2, 3])
}

/// Performs a serializing operation on all non-temporal ("streaming") store instructions that
/// were issued by the current thread prior to this instruction.
///
/// Guarantees that every non-temporal store instruction that precedes this fence, in program order, is
/// ordered before any load or store instruction which follows the fence in
/// synchronization order.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence)
/// (but note that Intel is only documenting the hardware-level concerns related to this
/// instruction; the Intel documentation does not take into account the extra concerns that arise
/// because the Rust memory model is different from the x86 memory model.)
///
/// # Safety of non-temporal stores
///
/// After using any non-temporal store intrinsic, but before any other access to the memory that the
/// intrinsic mutates, a call to `_mm_sfence` must be performed on the thread that used the
/// intrinsic.
///
/// Non-temporal stores behave very different from regular stores. For the purpose of the Rust
/// memory model, these stores are happening asynchronously in a background thread. This means a
/// non-temporal store can cause data races with other accesses, even other accesses on the same
/// thread. It also means that cross-thread synchronization does not work as expected: let's say the
/// intrinsic is called on thread T1, and T1 performs synchronization with some other thread T2. The
/// non-temporal store acts as if it happened not in T1 but in a different thread T3, and T2 has not
/// synchronized with T3! Calling `_mm_sfence` makes the current thread wait for and synchronize
/// with all the non-temporal stores previously started on this thread, which means in particular
/// that subsequent synchronization with other threads will then work as intended again.
///
/// The general pattern to use non-temporal stores correctly is to call `_mm_sfence` before your
/// code jumps back to code outside your library. This ensures all stores inside your function
/// are synchronized-before the return, and thus transitively synchronized-before everything
/// the caller does after your function returns.
//
// The following is not a doc comment since it's not clear whether we want to put this into the
// docs, but it should be written out somewhere.
//
// Formally, we consider non-temporal stores and sfences to be opaque blobs that the compiler cannot
// inspect, and that behave like the following functions. This explains where the docs above come
// from.
// ```
// #[thread_local]
// static mut PENDING_NONTEMP_WRITES = AtomicUsize::new(0);
//
// pub unsafe fn nontemporal_store<T>(ptr: *mut T, val: T) {
//     PENDING_NONTEMP_WRITES.fetch_add(1, Relaxed);
//     // Spawn a thread that will eventually do our write.
//     // We need to fetch a pointer to this thread's pending-write
//     // counter, so that we can access it from the background thread.
//     let pending_writes = addr_of!(PENDING_NONTEMP_WRITES);
//     // If this was actual Rust code we'd have to do some extra work
//     // because `ptr`, `val`, `pending_writes` are all `!Send`. We skip that here.
//     std::thread::spawn(move || {
//         // Do the write in the background thread.
//         ptr.write(val);
//         // Register the write as done. Crucially, this is `Release`, so it
//         // syncs-with the `Acquire in `sfence`.
//         (&*pending_writes).fetch_sub(1, Release);
//     });
// }
//
// pub fn sfence() {
//     unsafe {
//         // Wait until there are no more pending writes.
//         while PENDING_NONTEMP_WRITES.load(Acquire) > 0 {}
//     }
// }
// ```
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(sfence))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_sfence() {
    sfence()
}

/// Gets the unsigned 32-bit value of the MXCSR control and status register.
///
/// Note that Rust makes no guarantees whatsoever about the contents of this register: Rust
/// floating-point operations may or may not result in this register getting updated with exception
/// state, and the register can change between two invocations of this function even when no
/// floating-point operations appear in the source code (since floating-point operations appearing
/// earlier or later can be reordered).
///
/// If you need to perform some floating-point operations and check whether they raised an
/// exception, use an inline assembly block for the entire sequence of operations.
///
/// For more info see [`_mm_setcsr`](fn._mm_setcsr.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(stmxcsr))]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[deprecated(
    since = "1.75.0",
    note = "see `_mm_getcsr` documentation - use inline assembly instead"
)]
pub unsafe fn _mm_getcsr() -> u32 {
    let mut result = 0_i32;
    stmxcsr(ptr::addr_of_mut!(result) as *mut i8);
    result as u32
}

/// Sets the MXCSR register with the 32-bit unsigned integer value.
///
/// This register controls how SIMD instructions handle floating point
/// operations. Modifying this register only affects the current thread.
///
/// It contains several groups of flags:
///
/// * *Exception flags* report which exceptions occurred since last they were
/// reset.
///
/// * *Masking flags* can be used to mask (ignore) certain exceptions. By
/// default
/// these flags are all set to 1, so all exceptions are masked. When an
/// an exception is masked, the processor simply sets the exception flag and
/// continues the operation. If the exception is unmasked, the flag is also set
/// but additionally an exception handler is invoked.
///
/// * *Rounding mode flags* control the rounding mode of floating point
/// instructions.
///
/// * The *denormals-are-zero mode flag* turns all numbers which would be
/// denormalized (exponent bits are all zeros) into zeros.
///
/// Note that modifying the masking flags, rounding mode, or denormals-are-zero mode flags leads to
/// **immediate Undefined Behavior**: Rust assumes that these are always in their default state and
/// will optimize accordingly. This even applies when the register is altered and later reset to its
/// original value without any floating-point operations appearing in the source code between those
/// operations (since floating-point operations appearing earlier or later can be reordered).
///
/// If you need to perform some floating-point operations under a different masking flags, rounding
/// mode, or denormals-are-zero mode, use an inline assembly block and make sure to restore the
/// original MXCSR register state before the end of the block.
///
/// ## Exception Flags
///
/// * `_MM_EXCEPT_INVALID`: An invalid operation was performed (e.g., dividing
///   Infinity by Infinity).
///
/// * `_MM_EXCEPT_DENORM`: An operation attempted to operate on a denormalized
///   number. Mainly this can cause loss of precision.
///
/// * `_MM_EXCEPT_DIV_ZERO`: Division by zero occurred.
///
/// * `_MM_EXCEPT_OVERFLOW`: A numeric overflow exception occurred, i.e., a
/// result was too large to be represented (e.g., an `f32` with absolute
/// value
///   greater than `2^128`).
///
/// * `_MM_EXCEPT_UNDERFLOW`: A numeric underflow exception occurred, i.e., a
/// result was too small to be represented in a normalized way (e.g., an
/// `f32`
///   with absulte value smaller than `2^-126`.)
///
/// * `_MM_EXCEPT_INEXACT`: An inexact-result exception occurred (a.k.a.
///   precision exception). This means some precision was lost due to rounding.
///   For example, the fraction `1/3` cannot be represented accurately in a
///   32 or 64 bit float and computing it would cause this exception to be
///   raised. Precision exceptions are very common, so they are usually masked.
///
/// Exception flags can be read and set using the convenience functions
/// `_MM_GET_EXCEPTION_STATE` and `_MM_SET_EXCEPTION_STATE`. For example, to
/// check if an operation caused some overflow:
///
/// ```rust,ignore
/// _MM_SET_EXCEPTION_STATE(0); // clear all exception flags
///                             // perform calculations
/// if _MM_GET_EXCEPTION_STATE() & _MM_EXCEPT_OVERFLOW != 0 {
///     // handle overflow
/// }
/// ```
///
/// ## Masking Flags
///
/// There is one masking flag for each exception flag: `_MM_MASK_INVALID`,
/// `_MM_MASK_DENORM`, `_MM_MASK_DIV_ZERO`, `_MM_MASK_OVERFLOW`,
/// `_MM_MASK_UNDERFLOW`, `_MM_MASK_INEXACT`.
///
/// A single masking bit can be set via
///
/// ```rust,ignore
/// _MM_SET_EXCEPTION_MASK(_MM_MASK_UNDERFLOW);
/// ```
///
/// However, since mask bits are by default all set to 1, it is more common to
/// want to *disable* certain bits. For example, to unmask the underflow
/// exception, use:
///
/// ```rust,ignore
/// _mm_setcsr(_mm_getcsr() & !_MM_MASK_UNDERFLOW); // unmask underflow
/// exception
/// ```
///
/// Warning: an unmasked exception will cause an exception handler to be
/// called.
/// The standard handler will simply terminate the process. So, in this case
/// any underflow exception would terminate the current process with something
/// like `signal: 8, SIGFPE: erroneous arithmetic operation`.
///
/// ## Rounding Mode
///
/// The rounding mode is describe using two bits. It can be read and set using
/// the convenience wrappers `_MM_GET_ROUNDING_MODE()` and
/// `_MM_SET_ROUNDING_MODE(mode)`.
///
/// The rounding modes are:
///
/// * `_MM_ROUND_NEAREST`: (default) Round to closest to the infinite precision
///   value. If two values are equally close, round to even (i.e., least
///   significant bit will be zero).
///
/// * `_MM_ROUND_DOWN`: Round toward negative Infinity.
///
/// * `_MM_ROUND_UP`: Round toward positive Infinity.
///
/// * `_MM_ROUND_TOWARD_ZERO`: Round towards zero (truncate).
///
/// Example:
///
/// ```rust,ignore
/// _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN)
/// ```
///
/// ## Denormals-are-zero/Flush-to-zero Mode
///
/// If this bit is set, values that would be denormalized will be set to zero
/// instead. This is turned off by default.
///
/// You can read and enable/disable this mode via the helper functions
/// `_MM_GET_FLUSH_ZERO_MODE()` and `_MM_SET_FLUSH_ZERO_MODE()`:
///
/// ```rust,ignore
/// _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF); // turn off (default)
/// _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); // turn on
/// ```
///
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setcsr)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(ldmxcsr))]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[deprecated(
    since = "1.75.0",
    note = "see `_mm_setcsr` documentation - use inline assembly instead"
)]
pub unsafe fn _mm_setcsr(val: u32) {
    ldmxcsr(ptr::addr_of!(val) as *const i8);
}

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_EXCEPT_INVALID: u32 = 0x0001;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_EXCEPT_DENORM: u32 = 0x0002;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_EXCEPT_DIV_ZERO: u32 = 0x0004;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_EXCEPT_OVERFLOW: u32 = 0x0008;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_EXCEPT_UNDERFLOW: u32 = 0x0010;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_EXCEPT_INEXACT: u32 = 0x0020;
/// See [`_MM_GET_EXCEPTION_STATE`](fn._MM_GET_EXCEPTION_STATE.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_EXCEPT_MASK: u32 = 0x003f;

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_MASK_INVALID: u32 = 0x0080;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_MASK_DENORM: u32 = 0x0100;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_MASK_DIV_ZERO: u32 = 0x0200;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_MASK_OVERFLOW: u32 = 0x0400;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_MASK_UNDERFLOW: u32 = 0x0800;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_MASK_INEXACT: u32 = 0x1000;
/// See [`_MM_GET_EXCEPTION_MASK`](fn._MM_GET_EXCEPTION_MASK.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_MASK_MASK: u32 = 0x1f80;

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_ROUND_NEAREST: u32 = 0x0000;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_ROUND_DOWN: u32 = 0x2000;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_ROUND_UP: u32 = 0x4000;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_ROUND_TOWARD_ZERO: u32 = 0x6000;

/// See [`_MM_GET_ROUNDING_MODE`](fn._MM_GET_ROUNDING_MODE.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_ROUND_MASK: u32 = 0x6000;

/// See [`_MM_GET_FLUSH_ZERO_MODE`](fn._MM_GET_FLUSH_ZERO_MODE.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FLUSH_ZERO_MASK: u32 = 0x8000;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FLUSH_ZERO_ON: u32 = 0x8000;
/// See [`_mm_setcsr`](fn._mm_setcsr.html)
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_FLUSH_ZERO_OFF: u32 = 0x0000;

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_EXCEPTION_MASK)
#[inline]
#[allow(deprecated)] // Deprecated function implemented on top of deprecated function
#[allow(non_snake_case)]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[deprecated(
    since = "1.75.0",
    note = "see `_mm_getcsr` documentation - use inline assembly instead"
)]
pub unsafe fn _MM_GET_EXCEPTION_MASK() -> u32 {
    _mm_getcsr() & _MM_MASK_MASK
}

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_EXCEPTION_STATE)
#[inline]
#[allow(deprecated)] // Deprecated function implemented on top of deprecated function
#[allow(non_snake_case)]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[deprecated(
    since = "1.75.0",
    note = "see `_mm_getcsr` documentation - use inline assembly instead"
)]
pub unsafe fn _MM_GET_EXCEPTION_STATE() -> u32 {
    _mm_getcsr() & _MM_EXCEPT_MASK
}

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE)
#[inline]
#[allow(deprecated)] // Deprecated function implemented on top of deprecated function
#[allow(non_snake_case)]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[deprecated(
    since = "1.75.0",
    note = "see `_mm_getcsr` documentation - use inline assembly instead"
)]
pub unsafe fn _MM_GET_FLUSH_ZERO_MODE() -> u32 {
    _mm_getcsr() & _MM_FLUSH_ZERO_MASK
}

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE)
#[inline]
#[allow(deprecated)] // Deprecated function implemented on top of deprecated function
#[allow(non_snake_case)]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[deprecated(
    since = "1.75.0",
    note = "see `_mm_getcsr` documentation - use inline assembly instead"
)]
pub unsafe fn _MM_GET_ROUNDING_MODE() -> u32 {
    _mm_getcsr() & _MM_ROUND_MASK
}

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_EXCEPTION_MASK)
#[inline]
#[allow(deprecated)] // Deprecated function implemented on top of deprecated function
#[allow(non_snake_case)]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[deprecated(
    since = "1.75.0",
    note = "see `_mm_setcsr` documentation - use inline assembly instead"
)]
pub unsafe fn _MM_SET_EXCEPTION_MASK(x: u32) {
    _mm_setcsr((_mm_getcsr() & !_MM_MASK_MASK) | x)
}

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_EXCEPTION_STATE)
#[inline]
#[allow(deprecated)] // Deprecated function implemented on top of deprecated function
#[allow(non_snake_case)]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[deprecated(
    since = "1.75.0",
    note = "see `_mm_setcsr` documentation - use inline assembly instead"
)]
pub unsafe fn _MM_SET_EXCEPTION_STATE(x: u32) {
    _mm_setcsr((_mm_getcsr() & !_MM_EXCEPT_MASK) | x)
}

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE)
#[inline]
#[allow(deprecated)] // Deprecated function implemented on top of deprecated function
#[allow(non_snake_case)]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[deprecated(
    since = "1.75.0",
    note = "see `_mm_setcsr` documentation - use inline assembly instead"
)]
pub unsafe fn _MM_SET_FLUSH_ZERO_MODE(x: u32) {
    let val = (_mm_getcsr() & !_MM_FLUSH_ZERO_MASK) | x;
    // println!("setting csr={:x}", val);
    _mm_setcsr(val)
}

/// See [`_mm_setcsr`](fn._mm_setcsr.html)
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE)
#[inline]
#[allow(deprecated)] // Deprecated function implemented on top of deprecated function
#[allow(non_snake_case)]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[deprecated(
    since = "1.75.0",
    note = "see `_mm_setcsr` documentation - use inline assembly instead"
)]
pub unsafe fn _MM_SET_ROUNDING_MODE(x: u32) {
    _mm_setcsr((_mm_getcsr() & !_MM_ROUND_MASK) | x)
}

/// See [`_mm_prefetch`](fn._mm_prefetch.html).
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_HINT_T0: i32 = 3;

/// See [`_mm_prefetch`](fn._mm_prefetch.html).
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_HINT_T1: i32 = 2;

/// See [`_mm_prefetch`](fn._mm_prefetch.html).
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_HINT_T2: i32 = 1;

/// See [`_mm_prefetch`](fn._mm_prefetch.html).
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_HINT_NTA: i32 = 0;

/// See [`_mm_prefetch`](fn._mm_prefetch.html).
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_HINT_ET0: i32 = 7;

/// See [`_mm_prefetch`](fn._mm_prefetch.html).
#[stable(feature = "simd_x86", since = "1.27.0")]
pub const _MM_HINT_ET1: i32 = 6;

/// Fetch the cache line that contains address `p` using the given `STRATEGY`.
///
/// The `STRATEGY` must be one of:
///
/// * [`_MM_HINT_T0`](constant._MM_HINT_T0.html): Fetch into all levels of the
///   cache hierarchy.
///
/// * [`_MM_HINT_T1`](constant._MM_HINT_T1.html): Fetch into L2 and higher.
///
/// * [`_MM_HINT_T2`](constant._MM_HINT_T2.html): Fetch into L3 and higher or
/// an   implementation-specific choice (e.g., L2 if there is no L3).
///
/// * [`_MM_HINT_NTA`](constant._MM_HINT_NTA.html): Fetch data using the
///   non-temporal access (NTA) hint. It may be a place closer than main memory
///   but outside of the cache hierarchy. This is used to reduce access latency
///   without polluting the cache.
///
/// * [`_MM_HINT_ET0`](constant._MM_HINT_ET0.html) and
///   [`_MM_HINT_ET1`](constant._MM_HINT_ET1.html) are similar to `_MM_HINT_T0`
///   and `_MM_HINT_T1` but indicate an anticipation to write to the address.
///
/// The actual implementation depends on the particular CPU. This instruction
/// is considered a hint, so the CPU is also free to simply ignore the request.
///
/// The amount of prefetched data depends on the cache line size of the
/// specific CPU, but it will be at least 32 bytes.
///
/// Common caveats:
///
/// * Most modern CPUs already automatically prefetch data based on predicted
///   access patterns.
///
/// * Data is usually not fetched if this would cause a TLB miss or a page
///   fault.
///
/// * Too much prefetching can cause unnecessary cache evictions.
///
/// * Prefetching may also fail if there are not enough memory-subsystem
///   resources (e.g., request buffers).
///
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch)
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(prefetcht0, STRATEGY = _MM_HINT_T0))]
#[cfg_attr(test, assert_instr(prefetcht1, STRATEGY = _MM_HINT_T1))]
#[cfg_attr(test, assert_instr(prefetcht2, STRATEGY = _MM_HINT_T2))]
#[cfg_attr(test, assert_instr(prefetchnta, STRATEGY = _MM_HINT_NTA))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_prefetch<const STRATEGY: i32>(p: *const i8) {
    // We use the `llvm.prefetch` intrinsic with `cache type` = 1 (data cache).
    // `locality` and `rw` are based on our `STRATEGY`.
    prefetch(p, (STRATEGY >> 2) & 1, STRATEGY & 3, 1);
}

/// Returns vector of type __m128 with indeterminate elements.
/// Despite being "undefined", this is some valid value and not equivalent to [`mem::MaybeUninit`].
/// In practice, this is equivalent to [`mem::zeroed`].
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps)
#[inline]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_undefined_ps() -> __m128 {
    _mm_set1_ps(0.0)
}

/// Transpose the 4x4 matrix formed by 4 rows of __m128 in place.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_TRANSPOSE4_PS)
#[inline]
#[allow(non_snake_case)]
#[target_feature(enable = "sse")]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _MM_TRANSPOSE4_PS(
    row0: &mut __m128,
    row1: &mut __m128,
    row2: &mut __m128,
    row3: &mut __m128,
) {
    let tmp0 = _mm_unpacklo_ps(*row0, *row1);
    let tmp2 = _mm_unpacklo_ps(*row2, *row3);
    let tmp1 = _mm_unpackhi_ps(*row0, *row1);
    let tmp3 = _mm_unpackhi_ps(*row2, *row3);

    *row0 = _mm_movelh_ps(tmp0, tmp2);
    *row1 = _mm_movehl_ps(tmp2, tmp0);
    *row2 = _mm_movelh_ps(tmp1, tmp3);
    *row3 = _mm_movehl_ps(tmp3, tmp1);
}

#[allow(improper_ctypes)]
extern "C" {
    #[link_name = "llvm.x86.sse.add.ss"]
    fn addss(a: __m128, b: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.sub.ss"]
    fn subss(a: __m128, b: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.mul.ss"]
    fn mulss(a: __m128, b: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.div.ss"]
    fn divss(a: __m128, b: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.sqrt.ss"]
    fn sqrtss(a: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.sqrt.ps"]
    fn sqrtps(a: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.rcp.ss"]
    fn rcpss(a: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.rcp.ps"]
    fn rcpps(a: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.rsqrt.ss"]
    fn rsqrtss(a: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.rsqrt.ps"]
    fn rsqrtps(a: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.min.ss"]
    fn minss(a: __m128, b: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.min.ps"]
    fn minps(a: __m128, b: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.max.ss"]
    fn maxss(a: __m128, b: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.max.ps"]
    fn maxps(a: __m128, b: __m128) -> __m128;
    #[link_name = "llvm.x86.sse.cmp.ps"]
    fn cmpps(a: __m128, b: __m128, imm8: i8) -> __m128;
    #[link_name = "llvm.x86.sse.comieq.ss"]
    fn comieq_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.comilt.ss"]
    fn comilt_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.comile.ss"]
    fn comile_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.comigt.ss"]
    fn comigt_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.comige.ss"]
    fn comige_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.comineq.ss"]
    fn comineq_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomieq.ss"]
    fn ucomieq_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomilt.ss"]
    fn ucomilt_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomile.ss"]
    fn ucomile_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomigt.ss"]
    fn ucomigt_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomige.ss"]
    fn ucomige_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.ucomineq.ss"]
    fn ucomineq_ss(a: __m128, b: __m128) -> i32;
    #[link_name = "llvm.x86.sse.cvtss2si"]
    fn cvtss2si(a: __m128) -> i32;
    #[link_name = "llvm.x86.sse.cvttss2si"]
    fn cvttss2si(a: __m128) -> i32;
    #[link_name = "llvm.x86.sse.cvtsi2ss"]
    fn cvtsi2ss(a: __m128, b: i32) -> __m128;
    #[link_name = "llvm.x86.sse.sfence"]
    fn sfence();
    #[link_name = "llvm.x86.sse.stmxcsr"]
    fn stmxcsr(p: *mut i8);
    #[link_name = "llvm.x86.sse.ldmxcsr"]
    fn ldmxcsr(p: *const i8);
    #[link_name = "llvm.prefetch"]
    fn prefetch(p: *const i8, rw: i32, loc: i32, ty: i32);
    #[link_name = "llvm.x86.sse.cmp.ss"]
    fn cmpss(a: __m128, b: __m128, imm8: i8) -> __m128;
}

/// Stores `a` into the memory at `mem_addr` using a non-temporal memory hint.
///
/// `mem_addr` must be aligned on a 16-byte boundary or a general-protection
/// exception _may_ be generated.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps)
///
/// # Safety of non-temporal stores
///
/// After using this intrinsic, but before any other access to the memory that this intrinsic
/// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In
/// particular, functions that call this intrinsic should generally call `_mm_sfence` before they
/// return.
///
/// See [`_mm_sfence`] for details.
#[inline]
#[target_feature(enable = "sse")]
#[cfg_attr(test, assert_instr(movntps))]
#[stable(feature = "simd_x86", since = "1.27.0")]
#[allow(clippy::cast_ptr_alignment)]
pub unsafe fn _mm_stream_ps(mem_addr: *mut f32, a: __m128) {
    intrinsics::nontemporal_store(mem_addr as *mut __m128, a);
}

#[cfg(test)]
mod tests {
    use crate::{hint::black_box, mem::transmute, ptr};
    use std::{boxed, f32::NAN};
    use stdarch_test::simd_test;

    use crate::core_arch::{simd::*, x86::*};

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_add_ps() {
        let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_add_ps(a, b);
        assert_eq_m128(r, _mm_setr_ps(-101.0, 25.0, 0.0, -15.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_add_ss() {
        let a = _mm_set_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_set_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_add_ss(a, b);
        assert_eq_m128(r, _mm_set_ps(-1.0, 5.0, 0.0, -15.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_sub_ps() {
        let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_sub_ps(a, b);
        assert_eq_m128(r, _mm_setr_ps(99.0, -15.0, 0.0, -5.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_sub_ss() {
        let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_sub_ss(a, b);
        assert_eq_m128(r, _mm_setr_ps(99.0, 5.0, 0.0, -10.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_mul_ps() {
        let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_mul_ps(a, b);
        assert_eq_m128(r, _mm_setr_ps(100.0, 100.0, 0.0, 50.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_mul_ss() {
        let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_mul_ss(a, b);
        assert_eq_m128(r, _mm_setr_ps(100.0, 5.0, 0.0, -10.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_div_ps() {
        let a = _mm_setr_ps(-1.0, 5.0, 2.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.2, -5.0);
        let r = _mm_div_ps(a, b);
        assert_eq_m128(r, _mm_setr_ps(0.01, 0.25, 10.0, 2.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_div_ss() {
        let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_div_ss(a, b);
        assert_eq_m128(r, _mm_setr_ps(0.01, 5.0, 0.0, -10.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_sqrt_ss() {
        let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0);
        let r = _mm_sqrt_ss(a);
        let e = _mm_setr_ps(2.0, 13.0, 16.0, 100.0);
        assert_eq_m128(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_sqrt_ps() {
        let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0);
        let r = _mm_sqrt_ps(a);
        let e = _mm_setr_ps(2.0, 3.6055512, 4.0, 10.0);
        assert_eq_m128(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_rcp_ss() {
        let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0);
        let r = _mm_rcp_ss(a);
        let e = _mm_setr_ps(0.24993896, 13.0, 16.0, 100.0);
        let rel_err = 0.00048828125;
        assert_approx_eq!(get_m128(r, 0), get_m128(e, 0), 2. * rel_err);
        for i in 1..4 {
            assert_eq!(get_m128(r, i), get_m128(e, i));
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_rcp_ps() {
        let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0);
        let r = _mm_rcp_ps(a);
        let e = _mm_setr_ps(0.24993896, 0.0769043, 0.06248474, 0.0099983215);
        let rel_err = 0.00048828125;
        for i in 0..4 {
            assert_approx_eq!(get_m128(r, i), get_m128(e, i), 2. * rel_err);
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_rsqrt_ss() {
        let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0);
        let r = _mm_rsqrt_ss(a);
        let e = _mm_setr_ps(0.49987793, 13.0, 16.0, 100.0);
        let rel_err = 0.00048828125;
        for i in 0..4 {
            assert_approx_eq!(get_m128(r, i), get_m128(e, i), 2. * rel_err);
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_rsqrt_ps() {
        let a = _mm_setr_ps(4.0, 13.0, 16.0, 100.0);
        let r = _mm_rsqrt_ps(a);
        let e = _mm_setr_ps(0.49987793, 0.2772827, 0.24993896, 0.099990845);
        let rel_err = 0.00048828125;
        for i in 0..4 {
            assert_approx_eq!(get_m128(r, i), get_m128(e, i), 2. * rel_err);
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_min_ss() {
        let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_min_ss(a, b);
        assert_eq_m128(r, _mm_setr_ps(-100.0, 5.0, 0.0, -10.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_min_ps() {
        let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_min_ps(a, b);
        assert_eq_m128(r, _mm_setr_ps(-100.0, 5.0, 0.0, -10.0));

        // `_mm_min_ps` can **not** be implemented using the `simd_min` rust intrinsic. `simd_min`
        // is lowered by the llvm codegen backend to `llvm.minnum.v*` llvm intrinsic. This intrinsic
        // doesn't specify how -0.0 is handled. Unfortunately it happens to behave different from
        // the `minps` x86 instruction on x86. The `llvm.minnum.v*` llvm intrinsic equals
        // `r1` to `a` and `r2` to `b`.
        let a = _mm_setr_ps(-0.0, 0.0, 0.0, 0.0);
        let b = _mm_setr_ps(0.0, 0.0, 0.0, 0.0);
        let r1: [u8; 16] = transmute(_mm_min_ps(a, b));
        let r2: [u8; 16] = transmute(_mm_min_ps(b, a));
        let a: [u8; 16] = transmute(a);
        let b: [u8; 16] = transmute(b);
        assert_eq!(r1, b);
        assert_eq!(r2, a);
        assert_ne!(a, b); // sanity check that -0.0 is actually present
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_max_ss() {
        let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_max_ss(a, b);
        assert_eq_m128(r, _mm_setr_ps(-1.0, 5.0, 0.0, -10.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_max_ps() {
        let a = _mm_setr_ps(-1.0, 5.0, 0.0, -10.0);
        let b = _mm_setr_ps(-100.0, 20.0, 0.0, -5.0);
        let r = _mm_max_ps(a, b);
        assert_eq_m128(r, _mm_setr_ps(-1.0, 20.0, 0.0, -5.0));

        // Check SSE-specific semantics for -0.0 handling.
        let a = _mm_setr_ps(-0.0, 0.0, 0.0, 0.0);
        let b = _mm_setr_ps(0.0, 0.0, 0.0, 0.0);
        let r1: [u8; 16] = transmute(_mm_max_ps(a, b));
        let r2: [u8; 16] = transmute(_mm_max_ps(b, a));
        let a: [u8; 16] = transmute(a);
        let b: [u8; 16] = transmute(b);
        assert_eq!(r1, b);
        assert_eq!(r2, a);
        assert_ne!(a, b); // sanity check that -0.0 is actually present
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_and_ps() {
        let a = transmute(u32x4::splat(0b0011));
        let b = transmute(u32x4::splat(0b0101));
        let r = _mm_and_ps(*black_box(&a), *black_box(&b));
        let e = transmute(u32x4::splat(0b0001));
        assert_eq_m128(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_andnot_ps() {
        let a = transmute(u32x4::splat(0b0011));
        let b = transmute(u32x4::splat(0b0101));
        let r = _mm_andnot_ps(*black_box(&a), *black_box(&b));
        let e = transmute(u32x4::splat(0b0100));
        assert_eq_m128(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_or_ps() {
        let a = transmute(u32x4::splat(0b0011));
        let b = transmute(u32x4::splat(0b0101));
        let r = _mm_or_ps(*black_box(&a), *black_box(&b));
        let e = transmute(u32x4::splat(0b0111));
        assert_eq_m128(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_xor_ps() {
        let a = transmute(u32x4::splat(0b0011));
        let b = transmute(u32x4::splat(0b0101));
        let r = _mm_xor_ps(*black_box(&a), *black_box(&b));
        let e = transmute(u32x4::splat(0b0110));
        assert_eq_m128(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpeq_ss() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(-1.0, 5.0, 6.0, 7.0);
        let r: u32x4 = transmute(_mm_cmpeq_ss(a, b));
        let e: u32x4 = transmute(_mm_setr_ps(f32::from_bits(0), 2.0, 3.0, 4.0));
        assert_eq!(r, e);

        let b2 = _mm_setr_ps(1.0, 5.0, 6.0, 7.0);
        let r2: u32x4 = transmute(_mm_cmpeq_ss(a, b2));
        let e2: u32x4 = transmute(_mm_setr_ps(f32::from_bits(0xffffffff), 2.0, 3.0, 4.0));
        assert_eq!(r2, e2);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmplt_ss() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = 0u32; // a.extract(0) < b.extract(0)
        let c1 = 0u32; // a.extract(0) < c.extract(0)
        let d1 = !0u32; // a.extract(0) < d.extract(0)

        let rb: u32x4 = transmute(_mm_cmplt_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmplt_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmplt_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmple_ss() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = 0u32; // a.extract(0) <= b.extract(0)
        let c1 = !0u32; // a.extract(0) <= c.extract(0)
        let d1 = !0u32; // a.extract(0) <= d.extract(0)

        let rb: u32x4 = transmute(_mm_cmple_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmple_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmple_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpgt_ss() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = !0u32; // a.extract(0) > b.extract(0)
        let c1 = 0u32; // a.extract(0) > c.extract(0)
        let d1 = 0u32; // a.extract(0) > d.extract(0)

        let rb: u32x4 = transmute(_mm_cmpgt_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmpgt_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmpgt_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpge_ss() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = !0u32; // a.extract(0) >= b.extract(0)
        let c1 = !0u32; // a.extract(0) >= c.extract(0)
        let d1 = 0u32; // a.extract(0) >= d.extract(0)

        let rb: u32x4 = transmute(_mm_cmpge_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmpge_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmpge_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpneq_ss() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = !0u32; // a.extract(0) != b.extract(0)
        let c1 = 0u32; // a.extract(0) != c.extract(0)
        let d1 = !0u32; // a.extract(0) != d.extract(0)

        let rb: u32x4 = transmute(_mm_cmpneq_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmpneq_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmpneq_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpnlt_ss() {
        // TODO: this test is exactly the same as for `_mm_cmpge_ss`, but there
        // must be a difference. It may have to do with behavior in the
        // presence of NaNs (signaling or quiet). If so, we should add tests
        // for those.

        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = !0u32; // a.extract(0) >= b.extract(0)
        let c1 = !0u32; // a.extract(0) >= c.extract(0)
        let d1 = 0u32; // a.extract(0) >= d.extract(0)

        let rb: u32x4 = transmute(_mm_cmpnlt_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmpnlt_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmpnlt_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpnle_ss() {
        // TODO: this test is exactly the same as for `_mm_cmpgt_ss`, but there
        // must be a difference. It may have to do with behavior in the
        // presence
        // of NaNs (signaling or quiet). If so, we should add tests for those.

        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = !0u32; // a.extract(0) > b.extract(0)
        let c1 = 0u32; // a.extract(0) > c.extract(0)
        let d1 = 0u32; // a.extract(0) > d.extract(0)

        let rb: u32x4 = transmute(_mm_cmpnle_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmpnle_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmpnle_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpngt_ss() {
        // TODO: this test is exactly the same as for `_mm_cmple_ss`, but there
        // must be a difference. It may have to do with behavior in the
        // presence of NaNs (signaling or quiet). If so, we should add tests
        // for those.

        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = 0u32; // a.extract(0) <= b.extract(0)
        let c1 = !0u32; // a.extract(0) <= c.extract(0)
        let d1 = !0u32; // a.extract(0) <= d.extract(0)

        let rb: u32x4 = transmute(_mm_cmpngt_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmpngt_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmpngt_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpnge_ss() {
        // TODO: this test is exactly the same as for `_mm_cmplt_ss`, but there
        // must be a difference. It may have to do with behavior in the
        // presence of NaNs (signaling or quiet). If so, we should add tests
        // for those.

        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(1.0, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = 0u32; // a.extract(0) < b.extract(0)
        let c1 = 0u32; // a.extract(0) < c.extract(0)
        let d1 = !0u32; // a.extract(0) < d.extract(0)

        let rb: u32x4 = transmute(_mm_cmpnge_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmpnge_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmpnge_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpord_ss() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(NAN, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = !0u32; // a.extract(0) ord b.extract(0)
        let c1 = 0u32; // a.extract(0) ord c.extract(0)
        let d1 = !0u32; // a.extract(0) ord d.extract(0)

        let rb: u32x4 = transmute(_mm_cmpord_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmpord_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmpord_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpunord_ss() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(0.0, 5.0, 6.0, 7.0);
        let c = _mm_setr_ps(NAN, 5.0, 6.0, 7.0);
        let d = _mm_setr_ps(2.0, 5.0, 6.0, 7.0);

        let b1 = 0u32; // a.extract(0) unord b.extract(0)
        let c1 = !0u32; // a.extract(0) unord c.extract(0)
        let d1 = 0u32; // a.extract(0) unord d.extract(0)

        let rb: u32x4 = transmute(_mm_cmpunord_ss(a, b));
        let eb: u32x4 = transmute(_mm_setr_ps(f32::from_bits(b1), 2.0, 3.0, 4.0));
        assert_eq!(rb, eb);

        let rc: u32x4 = transmute(_mm_cmpunord_ss(a, c));
        let ec: u32x4 = transmute(_mm_setr_ps(f32::from_bits(c1), 2.0, 3.0, 4.0));
        assert_eq!(rc, ec);

        let rd: u32x4 = transmute(_mm_cmpunord_ss(a, d));
        let ed: u32x4 = transmute(_mm_setr_ps(f32::from_bits(d1), 2.0, 3.0, 4.0));
        assert_eq!(rd, ed);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpeq_ps() {
        let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN);
        let b = _mm_setr_ps(15.0, 20.0, 1.0, NAN);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(fls, fls, tru, fls);
        let r: u32x4 = transmute(_mm_cmpeq_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmplt_ps() {
        let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN);
        let b = _mm_setr_ps(15.0, 20.0, 1.0, NAN);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(tru, fls, fls, fls);
        let r: u32x4 = transmute(_mm_cmplt_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmple_ps() {
        let a = _mm_setr_ps(10.0, 50.0, 1.0, 4.0);
        let b = _mm_setr_ps(15.0, 20.0, 1.0, NAN);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(tru, fls, tru, fls);
        let r: u32x4 = transmute(_mm_cmple_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpgt_ps() {
        let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN);
        let b = _mm_setr_ps(15.0, 20.0, 1.0, 42.0);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(fls, tru, fls, fls);
        let r: u32x4 = transmute(_mm_cmpgt_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpge_ps() {
        let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN);
        let b = _mm_setr_ps(15.0, 20.0, 1.0, 42.0);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(fls, tru, tru, fls);
        let r: u32x4 = transmute(_mm_cmpge_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpneq_ps() {
        let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN);
        let b = _mm_setr_ps(15.0, 20.0, 1.0, NAN);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(tru, tru, fls, tru);
        let r: u32x4 = transmute(_mm_cmpneq_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpnlt_ps() {
        let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN);
        let b = _mm_setr_ps(15.0, 20.0, 1.0, 5.0);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(fls, tru, tru, tru);
        let r: u32x4 = transmute(_mm_cmpnlt_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpnle_ps() {
        let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN);
        let b = _mm_setr_ps(15.0, 20.0, 1.0, 5.0);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(fls, tru, fls, tru);
        let r: u32x4 = transmute(_mm_cmpnle_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpngt_ps() {
        let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN);
        let b = _mm_setr_ps(15.0, 20.0, 1.0, 5.0);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(tru, fls, tru, tru);
        let r: u32x4 = transmute(_mm_cmpngt_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpnge_ps() {
        let a = _mm_setr_ps(10.0, 50.0, 1.0, NAN);
        let b = _mm_setr_ps(15.0, 20.0, 1.0, 5.0);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(tru, fls, fls, tru);
        let r: u32x4 = transmute(_mm_cmpnge_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpord_ps() {
        let a = _mm_setr_ps(10.0, 50.0, NAN, NAN);
        let b = _mm_setr_ps(15.0, NAN, 1.0, NAN);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(tru, fls, fls, fls);
        let r: u32x4 = transmute(_mm_cmpord_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cmpunord_ps() {
        let a = _mm_setr_ps(10.0, 50.0, NAN, NAN);
        let b = _mm_setr_ps(15.0, NAN, 1.0, NAN);
        let tru = !0u32;
        let fls = 0u32;

        let e = u32x4::new(fls, tru, tru, tru);
        let r: u32x4 = transmute(_mm_cmpunord_ps(a, b));
        assert_eq!(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_comieq_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[1i32, 0, 0, 0];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_comieq_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_comieq_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_comilt_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[0i32, 1, 0, 0];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_comilt_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_comilt_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_comile_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[1i32, 1, 0, 0];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_comile_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_comile_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_comigt_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[1i32, 0, 1, 0];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_comige_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_comige_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_comineq_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[0i32, 1, 1, 1];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_comineq_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_comineq_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_ucomieq_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[1i32, 0, 0, 0];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_ucomieq_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_ucomieq_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_ucomilt_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[0i32, 1, 0, 0];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_ucomilt_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_ucomilt_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_ucomile_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[1i32, 1, 0, 0];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_ucomile_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_ucomile_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_ucomigt_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[0i32, 0, 1, 0];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_ucomigt_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_ucomigt_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_ucomige_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[1i32, 0, 1, 0];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_ucomige_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_ucomige_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_ucomineq_ss() {
        let aa = &[3.0f32, 12.0, 23.0, NAN];
        let bb = &[3.0f32, 47.5, 1.5, NAN];

        let ee = &[0i32, 1, 1, 1];

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            let r = _mm_ucomineq_ss(a, b);

            assert_eq!(
                ee[i], r,
                "_mm_ucomineq_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r, ee[i], i
            );
        }
    }

    #[allow(deprecated)] // FIXME: This test uses deprecated CSR access functions
    #[simd_test(enable = "sse")]
    #[cfg_attr(miri, ignore)] // Uses _mm_setcsr, which is not supported by Miri
    unsafe fn test_mm_comieq_ss_vs_ucomieq_ss() {
        // If one of the arguments is a quiet NaN `comieq_ss` should signal an
        // Invalid Operation Exception while `ucomieq_ss` should not.
        let aa = &[3.0f32, NAN, 23.0, NAN];
        let bb = &[3.0f32, 47.5, NAN, NAN];

        let ee = &[1i32, 0, 0, 0];
        let exc = &[0u32, 1, 1, 1]; // Should comieq_ss signal an exception?

        for i in 0..4 {
            let a = _mm_setr_ps(aa[i], 1.0, 2.0, 3.0);
            let b = _mm_setr_ps(bb[i], 0.0, 2.0, 4.0);

            _MM_SET_EXCEPTION_STATE(0);
            let r1 = _mm_comieq_ss(*black_box(&a), b);
            let s1 = _MM_GET_EXCEPTION_STATE();

            _MM_SET_EXCEPTION_STATE(0);
            let r2 = _mm_ucomieq_ss(*black_box(&a), b);
            let s2 = _MM_GET_EXCEPTION_STATE();

            assert_eq!(
                ee[i], r1,
                "_mm_comeq_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r1, ee[i], i
            );
            assert_eq!(
                ee[i], r2,
                "_mm_ucomeq_ss({:?}, {:?}) = {}, expected: {} (i={})",
                a, b, r2, ee[i], i
            );
            assert_eq!(
                s1,
                exc[i] * _MM_EXCEPT_INVALID,
                "_mm_comieq_ss() set exception flags: {} (i={})",
                s1,
                i
            );
            assert_eq!(
                s2,
                0, // ucomieq_ss should not signal an exception
                "_mm_ucomieq_ss() set exception flags: {} (i={})",
                s2,
                i
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cvtss_si32() {
        let inputs = &[42.0f32, -3.1, 4.0e10, 4.0e-20, NAN, 2147483500.1];
        let result = &[42i32, -3, i32::MIN, 0, i32::MIN, 2147483520];
        for i in 0..inputs.len() {
            let x = _mm_setr_ps(inputs[i], 1.0, 3.0, 4.0);
            let e = result[i];
            let r = _mm_cvtss_si32(x);
            assert_eq!(
                e, r,
                "TestCase #{} _mm_cvtss_si32({:?}) = {}, expected: {}",
                i, x, r, e
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cvttss_si32() {
        let inputs = &[
            (42.0f32, 42i32),
            (-31.4, -31),
            (-33.5, -33),
            (-34.5, -34),
            (10.999, 10),
            (-5.99, -5),
            (4.0e10, i32::MIN),
            (4.0e-10, 0),
            (NAN, i32::MIN),
            (2147483500.1, 2147483520),
        ];
        for (i, &(xi, e)) in inputs.iter().enumerate() {
            let x = _mm_setr_ps(xi, 1.0, 3.0, 4.0);
            let r = _mm_cvttss_si32(x);
            assert_eq!(
                e, r,
                "TestCase #{} _mm_cvttss_si32({:?}) = {}, expected: {}",
                i, x, r, e
            );
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cvtsi32_ss() {
        let inputs = &[
            (4555i32, 4555.0f32),
            (322223333, 322223330.0),
            (-432, -432.0),
            (-322223333, -322223330.0),
        ];

        for &(x, f) in inputs.iter() {
            let a = _mm_setr_ps(5.0, 6.0, 7.0, 8.0);
            let r = _mm_cvtsi32_ss(a, x);
            let e = _mm_setr_ps(f, 6.0, 7.0, 8.0);
            assert_eq_m128(e, r);
        }
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_cvtss_f32() {
        let a = _mm_setr_ps(312.0134, 5.0, 6.0, 7.0);
        assert_eq!(_mm_cvtss_f32(a), 312.0134);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_set_ss() {
        let r = _mm_set_ss(black_box(4.25));
        assert_eq_m128(r, _mm_setr_ps(4.25, 0.0, 0.0, 0.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_set1_ps() {
        let r1 = _mm_set1_ps(black_box(4.25));
        let r2 = _mm_set_ps1(black_box(4.25));
        assert_eq!(get_m128(r1, 0), 4.25);
        assert_eq!(get_m128(r1, 1), 4.25);
        assert_eq!(get_m128(r1, 2), 4.25);
        assert_eq!(get_m128(r1, 3), 4.25);
        assert_eq!(get_m128(r2, 0), 4.25);
        assert_eq!(get_m128(r2, 1), 4.25);
        assert_eq!(get_m128(r2, 2), 4.25);
        assert_eq!(get_m128(r2, 3), 4.25);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_set_ps() {
        let r = _mm_set_ps(
            black_box(1.0),
            black_box(2.0),
            black_box(3.0),
            black_box(4.0),
        );
        assert_eq!(get_m128(r, 0), 4.0);
        assert_eq!(get_m128(r, 1), 3.0);
        assert_eq!(get_m128(r, 2), 2.0);
        assert_eq!(get_m128(r, 3), 1.0);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_setr_ps() {
        let r = _mm_setr_ps(
            black_box(1.0),
            black_box(2.0),
            black_box(3.0),
            black_box(4.0),
        );
        assert_eq_m128(r, _mm_setr_ps(1.0, 2.0, 3.0, 4.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_setzero_ps() {
        let r = *black_box(&_mm_setzero_ps());
        assert_eq_m128(r, _mm_set1_ps(0.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_shuffle() {
        assert_eq!(_MM_SHUFFLE(0, 1, 1, 3), 0b00_01_01_11);
        assert_eq!(_MM_SHUFFLE(3, 1, 1, 0), 0b11_01_01_00);
        assert_eq!(_MM_SHUFFLE(1, 2, 2, 1), 0b01_10_10_01);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_shuffle_ps() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0);
        let r = _mm_shuffle_ps::<0b00_01_01_11>(a, b);
        assert_eq_m128(r, _mm_setr_ps(4.0, 2.0, 6.0, 5.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_unpackhi_ps() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0);
        let r = _mm_unpackhi_ps(a, b);
        assert_eq_m128(r, _mm_setr_ps(3.0, 7.0, 4.0, 8.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_unpacklo_ps() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0);
        let r = _mm_unpacklo_ps(a, b);
        assert_eq_m128(r, _mm_setr_ps(1.0, 5.0, 2.0, 6.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_movehl_ps() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0);
        let r = _mm_movehl_ps(a, b);
        assert_eq_m128(r, _mm_setr_ps(7.0, 8.0, 3.0, 4.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_movelh_ps() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0);
        let r = _mm_movelh_ps(a, b);
        assert_eq_m128(r, _mm_setr_ps(1.0, 2.0, 5.0, 6.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_load_ss() {
        let a = 42.0f32;
        let r = _mm_load_ss(ptr::addr_of!(a));
        assert_eq_m128(r, _mm_setr_ps(42.0, 0.0, 0.0, 0.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_load1_ps() {
        let a = 42.0f32;
        let r = _mm_load1_ps(ptr::addr_of!(a));
        assert_eq_m128(r, _mm_setr_ps(42.0, 42.0, 42.0, 42.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_load_ps() {
        let vals = &[1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];

        let mut p = vals.as_ptr();
        let mut fixup = 0.0f32;

        // Make sure p is aligned, otherwise we might get a
        // (signal: 11, SIGSEGV: invalid memory reference)

        let unalignment = (p as usize) & 0xf;
        if unalignment != 0 {
            let delta = (16 - unalignment) >> 2;
            fixup = delta as f32;
            p = p.add(delta);
        }

        let r = _mm_load_ps(p);
        let e = _mm_add_ps(_mm_setr_ps(1.0, 2.0, 3.0, 4.0), _mm_set1_ps(fixup));
        assert_eq_m128(r, e);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_loadu_ps() {
        let vals = &[1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
        let p = vals.as_ptr().add(3);
        let r = _mm_loadu_ps(black_box(p));
        assert_eq_m128(r, _mm_setr_ps(4.0, 5.0, 6.0, 7.0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_loadr_ps() {
        let vals = &[1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];

        let mut p = vals.as_ptr();
        let mut fixup = 0.0f32;

        // Make sure p is aligned, otherwise we might get a
        // (signal: 11, SIGSEGV: invalid memory reference)

        let unalignment = (p as usize) & 0xf;
        if unalignment != 0 {
            let delta = (16 - unalignment) >> 2;
            fixup = delta as f32;
            p = p.add(delta);
        }

        let r = _mm_loadr_ps(p);
        let e = _mm_add_ps(_mm_setr_ps(4.0, 3.0, 2.0, 1.0), _mm_set1_ps(fixup));
        assert_eq_m128(r, e);
    }

    #[simd_test(enable = "sse2")]
    unsafe fn test_mm_loadu_si64() {
        let a = _mm_setr_epi64x(5, 6);
        let r = _mm_loadu_si64(ptr::addr_of!(a) as *const _);
        assert_eq_m128i(r, _mm_setr_epi64x(5, 0));
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_store_ss() {
        let mut vals = [0.0f32; 8];
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        _mm_store_ss(vals.as_mut_ptr().add(1), a);

        assert_eq!(vals[0], 0.0);
        assert_eq!(vals[1], 1.0);
        assert_eq!(vals[2], 0.0);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_store1_ps() {
        let mut vals = [0.0f32; 8];
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);

        let mut ofs = 0;
        let mut p = vals.as_mut_ptr();

        if (p as usize) & 0xf != 0 {
            ofs = (16 - ((p as usize) & 0xf)) >> 2;
            p = p.add(ofs);
        }

        _mm_store1_ps(p, *black_box(&a));

        if ofs > 0 {
            assert_eq!(vals[ofs - 1], 0.0);
        }
        assert_eq!(vals[ofs + 0], 1.0);
        assert_eq!(vals[ofs + 1], 1.0);
        assert_eq!(vals[ofs + 2], 1.0);
        assert_eq!(vals[ofs + 3], 1.0);
        assert_eq!(vals[ofs + 4], 0.0);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_store_ps() {
        let mut vals = [0.0f32; 8];
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);

        let mut ofs = 0;
        let mut p = vals.as_mut_ptr();

        // Align p to 16-byte boundary
        if (p as usize) & 0xf != 0 {
            ofs = (16 - ((p as usize) & 0xf)) >> 2;
            p = p.add(ofs);
        }

        _mm_store_ps(p, *black_box(&a));

        if ofs > 0 {
            assert_eq!(vals[ofs - 1], 0.0);
        }
        assert_eq!(vals[ofs + 0], 1.0);
        assert_eq!(vals[ofs + 1], 2.0);
        assert_eq!(vals[ofs + 2], 3.0);
        assert_eq!(vals[ofs + 3], 4.0);
        assert_eq!(vals[ofs + 4], 0.0);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_storer_ps() {
        let mut vals = [0.0f32; 8];
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);

        let mut ofs = 0;
        let mut p = vals.as_mut_ptr();

        // Align p to 16-byte boundary
        if (p as usize) & 0xf != 0 {
            ofs = (16 - ((p as usize) & 0xf)) >> 2;
            p = p.add(ofs);
        }

        _mm_storer_ps(p, *black_box(&a));

        if ofs > 0 {
            assert_eq!(vals[ofs - 1], 0.0);
        }
        assert_eq!(vals[ofs + 0], 4.0);
        assert_eq!(vals[ofs + 1], 3.0);
        assert_eq!(vals[ofs + 2], 2.0);
        assert_eq!(vals[ofs + 3], 1.0);
        assert_eq!(vals[ofs + 4], 0.0);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_storeu_ps() {
        let mut vals = [0.0f32; 8];
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);

        let mut ofs = 0;
        let mut p = vals.as_mut_ptr();

        // Make sure p is **not** aligned to 16-byte boundary
        if (p as usize) & 0xf == 0 {
            ofs = 1;
            p = p.add(1);
        }

        _mm_storeu_ps(p, *black_box(&a));

        if ofs > 0 {
            assert_eq!(vals[ofs - 1], 0.0);
        }
        assert_eq!(vals[ofs + 0], 1.0);
        assert_eq!(vals[ofs + 1], 2.0);
        assert_eq!(vals[ofs + 2], 3.0);
        assert_eq!(vals[ofs + 3], 4.0);
        assert_eq!(vals[ofs + 4], 0.0);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_move_ss() {
        let a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0);

        let r = _mm_move_ss(a, b);
        let e = _mm_setr_ps(5.0, 2.0, 3.0, 4.0);
        assert_eq_m128(e, r);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_mm_movemask_ps() {
        let r = _mm_movemask_ps(_mm_setr_ps(-1.0, 5.0, -5.0, 0.0));
        assert_eq!(r, 0b0101);

        let r = _mm_movemask_ps(_mm_setr_ps(-1.0, -5.0, -5.0, 0.0));
        assert_eq!(r, 0b0111);
    }

    #[simd_test(enable = "sse")]
    // Miri cannot support this until it is clear how it fits in the Rust memory model
    #[cfg_attr(miri, ignore)]
    unsafe fn test_mm_sfence() {
        _mm_sfence();
    }

    #[allow(deprecated)] // FIXME: This tests functions that are immediate UB
    #[simd_test(enable = "sse")]
    #[cfg_attr(miri, ignore)] // Miri does not support accesing the CSR
    unsafe fn test_mm_getcsr_setcsr_1() {
        let saved_csr = _mm_getcsr();

        let a = _mm_setr_ps(1.1e-36, 0.0, 0.0, 1.0);
        let b = _mm_setr_ps(0.001, 0.0, 0.0, 1.0);

        _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
        let r = _mm_mul_ps(*black_box(&a), *black_box(&b));

        _mm_setcsr(saved_csr);

        let exp = _mm_setr_ps(0.0, 0.0, 0.0, 1.0);
        assert_eq_m128(r, exp); // first component is a denormalized f32
    }

    #[allow(deprecated)] // FIXME: This tests functions that are immediate UB
    #[simd_test(enable = "sse")]
    #[cfg_attr(miri, ignore)] // Miri does not support accesing the CSR
    unsafe fn test_mm_getcsr_setcsr_2() {
        // Same as _mm_setcsr_1 test, but with opposite flag value.

        let saved_csr = _mm_getcsr();

        let a = _mm_setr_ps(1.1e-36, 0.0, 0.0, 1.0);
        let b = _mm_setr_ps(0.001, 0.0, 0.0, 1.0);

        _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF);
        let r = _mm_mul_ps(*black_box(&a), *black_box(&b));

        _mm_setcsr(saved_csr);

        let exp = _mm_setr_ps(1.1e-39, 0.0, 0.0, 1.0);
        assert_eq_m128(r, exp); // first component is a denormalized f32
    }

    #[allow(deprecated)] // FIXME: This tests functions that are immediate UB
    #[simd_test(enable = "sse")]
    #[cfg_attr(miri, ignore)] // Miri does not support accesing the CSR
    unsafe fn test_mm_getcsr_setcsr_underflow() {
        _MM_SET_EXCEPTION_STATE(0);

        let a = _mm_setr_ps(1.1e-36, 0.0, 0.0, 1.0);
        let b = _mm_setr_ps(1e-5, 0.0, 0.0, 1.0);

        assert_eq!(_MM_GET_EXCEPTION_STATE(), 0); // just to be sure

        let r = _mm_mul_ps(*black_box(&a), *black_box(&b));

        let exp = _mm_setr_ps(1.1e-41, 0.0, 0.0, 1.0);
        assert_eq_m128(r, exp);

        let underflow = _MM_GET_EXCEPTION_STATE() & _MM_EXCEPT_UNDERFLOW != 0;
        assert!(underflow);
    }

    #[simd_test(enable = "sse")]
    unsafe fn test_MM_TRANSPOSE4_PS() {
        let mut a = _mm_setr_ps(1.0, 2.0, 3.0, 4.0);
        let mut b = _mm_setr_ps(5.0, 6.0, 7.0, 8.0);
        let mut c = _mm_setr_ps(9.0, 10.0, 11.0, 12.0);
        let mut d = _mm_setr_ps(13.0, 14.0, 15.0, 16.0);

        _MM_TRANSPOSE4_PS(&mut a, &mut b, &mut c, &mut d);

        assert_eq_m128(a, _mm_setr_ps(1.0, 5.0, 9.0, 13.0));
        assert_eq_m128(b, _mm_setr_ps(2.0, 6.0, 10.0, 14.0));
        assert_eq_m128(c, _mm_setr_ps(3.0, 7.0, 11.0, 15.0));
        assert_eq_m128(d, _mm_setr_ps(4.0, 8.0, 12.0, 16.0));
    }

    #[repr(align(16))]
    struct Memory {
        pub data: [f32; 4],
    }

    #[simd_test(enable = "sse")]
    // Miri cannot support this until it is clear how it fits in the Rust memory model
    // (non-temporal store)
    #[cfg_attr(miri, ignore)]
    unsafe fn test_mm_stream_ps() {
        let a = _mm_set1_ps(7.0);
        let mut mem = Memory { data: [-1.0; 4] };

        _mm_stream_ps(ptr::addr_of_mut!(mem.data[0]), a);
        for i in 0..4 {
            assert_eq!(mem.data[i], get_m128(a, i));
        }
    }
}