1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;

use crate::cell::UnsafeCell;
use crate::fmt;
use crate::ops::Deref;
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::sync::atomic::{AtomicUsize, Ordering::Relaxed};
use crate::sys::sync as sys;

/// A re-entrant mutual exclusion lock
///
/// This lock will block *other* threads waiting for the lock to become
/// available. The thread which has already locked the mutex can lock it
/// multiple times without blocking, preventing a common source of deadlocks.
///
/// # Examples
///
/// Allow recursively calling a function needing synchronization from within
/// a callback (this is how [`StdoutLock`](crate::io::StdoutLock) is currently
/// implemented):
///
/// ```
/// #![feature(reentrant_lock)]
///
/// use std::cell::RefCell;
/// use std::sync::ReentrantLock;
///
/// pub struct Log {
///     data: RefCell<String>,
/// }
///
/// impl Log {
///     pub fn append(&self, msg: &str) {
///         self.data.borrow_mut().push_str(msg);
///     }
/// }
///
/// static LOG: ReentrantLock<Log> = ReentrantLock::new(Log { data: RefCell::new(String::new()) });
///
/// pub fn with_log<R>(f: impl FnOnce(&Log) -> R) -> R {
///     let log = LOG.lock();
///     f(&*log)
/// }
///
/// with_log(|log| {
///     log.append("Hello");
///     with_log(|log| log.append(" there!"));
/// });
/// ```
///
// # Implementation details
//
// The 'owner' field tracks which thread has locked the mutex.
//
// We use current_thread_unique_ptr() as the thread identifier,
// which is just the address of a thread local variable.
//
// If `owner` is set to the identifier of the current thread,
// we assume the mutex is already locked and instead of locking it again,
// we increment `lock_count`.
//
// When unlocking, we decrement `lock_count`, and only unlock the mutex when
// it reaches zero.
//
// `lock_count` is protected by the mutex and only accessed by the thread that has
// locked the mutex, so needs no synchronization.
//
// `owner` can be checked by other threads that want to see if they already
// hold the lock, so needs to be atomic. If it compares equal, we're on the
// same thread that holds the mutex and memory access can use relaxed ordering
// since we're not dealing with multiple threads. If it's not equal,
// synchronization is left to the mutex, making relaxed memory ordering for
// the `owner` field fine in all cases.
#[unstable(feature = "reentrant_lock", issue = "121440")]
pub struct ReentrantLock<T: ?Sized> {
    mutex: sys::Mutex,
    owner: AtomicUsize,
    lock_count: UnsafeCell<u32>,
    data: T,
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: Send + ?Sized> Send for ReentrantLock<T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: Send + ?Sized> Sync for ReentrantLock<T> {}

// Because of the `UnsafeCell`, these traits are not implemented automatically
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: UnwindSafe + ?Sized> UnwindSafe for ReentrantLock<T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: RefUnwindSafe + ?Sized> RefUnwindSafe for ReentrantLock<T> {}

/// An RAII implementation of a "scoped lock" of a re-entrant lock. When this
/// structure is dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] implementation.
///
/// This structure is created by the [`lock`](ReentrantLock::lock) method on
/// [`ReentrantLock`].
///
/// # Mutability
///
/// Unlike [`MutexGuard`](super::MutexGuard), `ReentrantLockGuard` does not
/// implement [`DerefMut`](crate::ops::DerefMut), because implementation of
/// the trait would violate Rust’s reference aliasing rules. Use interior
/// mutability (usually [`RefCell`](crate::cell::RefCell)) in order to mutate
/// the guarded data.
#[must_use = "if unused the ReentrantLock will immediately unlock"]
#[unstable(feature = "reentrant_lock", issue = "121440")]
pub struct ReentrantLockGuard<'a, T: ?Sized + 'a> {
    lock: &'a ReentrantLock<T>,
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> !Send for ReentrantLockGuard<'_, T> {}

#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: ?Sized + Sync> Sync for ReentrantLockGuard<'_, T> {}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T> ReentrantLock<T> {
    /// Creates a new re-entrant lock in an unlocked state ready for use.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(reentrant_lock)]
    /// use std::sync::ReentrantLock;
    ///
    /// let lock = ReentrantLock::new(0);
    /// ```
    pub const fn new(t: T) -> ReentrantLock<T> {
        ReentrantLock {
            mutex: sys::Mutex::new(),
            owner: AtomicUsize::new(0),
            lock_count: UnsafeCell::new(0),
            data: t,
        }
    }

    /// Consumes this lock, returning the underlying data.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(reentrant_lock)]
    ///
    /// use std::sync::ReentrantLock;
    ///
    /// let lock = ReentrantLock::new(0);
    /// assert_eq!(lock.into_inner(), 0);
    /// ```
    pub fn into_inner(self) -> T {
        self.data
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> ReentrantLock<T> {
    /// Acquires the lock, blocking the current thread until it is able to do
    /// so.
    ///
    /// This function will block the caller until it is available to acquire
    /// the lock. Upon returning, the thread is the only thread with the lock
    /// held. When the thread calling this method already holds the lock, the
    /// call succeeds without blocking.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(reentrant_lock)]
    /// use std::cell::Cell;
    /// use std::sync::{Arc, ReentrantLock};
    /// use std::thread;
    ///
    /// let lock = Arc::new(ReentrantLock::new(Cell::new(0)));
    /// let c_lock = Arc::clone(&lock);
    ///
    /// thread::spawn(move || {
    ///     c_lock.lock().set(10);
    /// }).join().expect("thread::spawn failed");
    /// assert_eq!(lock.lock().get(), 10);
    /// ```
    pub fn lock(&self) -> ReentrantLockGuard<'_, T> {
        let this_thread = current_thread_unique_ptr();
        // Safety: We only touch lock_count when we own the lock.
        unsafe {
            if self.owner.load(Relaxed) == this_thread {
                self.increment_lock_count().expect("lock count overflow in reentrant mutex");
            } else {
                self.mutex.lock();
                self.owner.store(this_thread, Relaxed);
                debug_assert_eq!(*self.lock_count.get(), 0);
                *self.lock_count.get() = 1;
            }
        }
        ReentrantLockGuard { lock: self }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `ReentrantLock` mutably, no actual locking
    /// needs to take place -- the mutable borrow statically guarantees no locks
    /// exist.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(reentrant_lock)]
    /// use std::sync::ReentrantLock;
    ///
    /// let mut lock = ReentrantLock::new(0);
    /// *lock.get_mut() = 10;
    /// assert_eq!(*lock.lock(), 10);
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.data
    }

    /// Attempts to acquire this lock.
    ///
    /// If the lock could not be acquired at this time, then `None` is returned.
    /// Otherwise, an RAII guard is returned.
    ///
    /// This function does not block.
    pub(crate) fn try_lock(&self) -> Option<ReentrantLockGuard<'_, T>> {
        let this_thread = current_thread_unique_ptr();
        // Safety: We only touch lock_count when we own the lock.
        unsafe {
            if self.owner.load(Relaxed) == this_thread {
                self.increment_lock_count()?;
                Some(ReentrantLockGuard { lock: self })
            } else if self.mutex.try_lock() {
                self.owner.store(this_thread, Relaxed);
                debug_assert_eq!(*self.lock_count.get(), 0);
                *self.lock_count.get() = 1;
                Some(ReentrantLockGuard { lock: self })
            } else {
                None
            }
        }
    }

    unsafe fn increment_lock_count(&self) -> Option<()> {
        *self.lock_count.get() = (*self.lock_count.get()).checked_add(1)?;
        Some(())
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLock<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut d = f.debug_struct("ReentrantLock");
        match self.try_lock() {
            Some(v) => d.field("data", &&*v),
            None => d.field("data", &format_args!("<locked>")),
        };
        d.finish_non_exhaustive()
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: Default> Default for ReentrantLock<T> {
    fn default() -> Self {
        Self::new(T::default())
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T> From<T> for ReentrantLock<T> {
    fn from(t: T) -> Self {
        Self::new(t)
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> Deref for ReentrantLockGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.lock.data
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLockGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Display + ?Sized> fmt::Display for ReentrantLockGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> Drop for ReentrantLockGuard<'_, T> {
    #[inline]
    fn drop(&mut self) {
        // Safety: We own the lock.
        unsafe {
            *self.lock.lock_count.get() -= 1;
            if *self.lock.lock_count.get() == 0 {
                self.lock.owner.store(0, Relaxed);
                self.lock.mutex.unlock();
            }
        }
    }
}

/// Get an address that is unique per running thread.
///
/// This can be used as a non-null usize-sized ID.
pub(crate) fn current_thread_unique_ptr() -> usize {
    // Use a non-drop type to make sure it's still available during thread destruction.
    thread_local! { static X: u8 = const { 0 } }
    X.with(|x| <*const _>::addr(x))
}