#[repr(C, align(8))]pub struct AtomicI64 { /* private fields */ }
Expand description
An integer type which can be safely shared between threads.
This type has the same size and bit validity as the underlying
integer type, i64
.
However, the alignment of this type is always equal to its size, even on targets where i64
has a lesser alignment.
For more about the differences between atomic types and
non-atomic types as well as information about the portability of
this type, please see the module-level documentation.
Note: This type is only available on platforms that support
atomic loads and stores of i64
.
Implementations§
source§impl AtomicI64
impl AtomicI64
1.75.0 (const: unstable) · sourcepub unsafe fn from_ptr<'a>(ptr: *mut i64) -> &'a AtomicI64
pub unsafe fn from_ptr<'a>(ptr: *mut i64) -> &'a AtomicI64
Creates a new reference to an atomic integer from a pointer.
§Examples
use std::sync::atomic::{self, AtomicI64};
// Get a pointer to an allocated value
let ptr: *mut i64 = Box::into_raw(Box::new(0));
assert!(ptr.cast::<AtomicI64>().is_aligned());
{
// Create an atomic view of the allocated value
let atomic = unsafe {AtomicI64::from_ptr(ptr) };
// Use `atomic` for atomic operations, possibly share it with other threads
atomic.store(1, atomic::Ordering::Relaxed);
}
// It's ok to non-atomically access the value behind `ptr`,
// since the reference to the atomic ended its lifetime in the block above
assert_eq!(unsafe { *ptr }, 1);
// Deallocate the value
unsafe { drop(Box::from_raw(ptr)) }
Run§Safety
ptr
must be aligned toalign_of::<AtomicI64>()
(note that on some platforms this can be bigger thanalign_of::<i64>()
).ptr
must be valid for both reads and writes for the whole lifetime'a
.- You must adhere to the Memory model for atomic accesses. In particular, it is not allowed to mix atomic and non-atomic accesses, or atomic accesses of different sizes, without synchronization.
1.34.0 · sourcepub fn get_mut(&mut self) -> &mut i64
pub fn get_mut(&mut self) -> &mut i64
Returns a mutable reference to the underlying integer.
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let mut some_var = AtomicI64::new(10);
assert_eq!(*some_var.get_mut(), 10);
*some_var.get_mut() = 5;
assert_eq!(some_var.load(Ordering::SeqCst), 5);
Runsourcepub fn from_mut(v: &mut i64) -> &mut AtomicI64
🔬This is a nightly-only experimental API. (atomic_from_mut
#76314)
pub fn from_mut(v: &mut i64) -> &mut AtomicI64
atomic_from_mut
#76314)Get atomic access to a &mut i64
.
Note: This function is only available on targets where i64
has an alignment of 8 bytes.
§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicI64, Ordering};
let mut some_int = 123;
let a = AtomicI64::from_mut(&mut some_int);
a.store(100, Ordering::Relaxed);
assert_eq!(some_int, 100);
Runsourcepub fn get_mut_slice(this: &mut [AtomicI64]) -> &mut [i64]
🔬This is a nightly-only experimental API. (atomic_from_mut
#76314)
pub fn get_mut_slice(this: &mut [AtomicI64]) -> &mut [i64]
atomic_from_mut
#76314)Get non-atomic access to a &mut [AtomicI64]
slice
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicI64, Ordering};
let mut some_ints = [const { AtomicI64::new(0) }; 10];
let view: &mut [i64] = AtomicI64::get_mut_slice(&mut some_ints);
assert_eq!(view, [0; 10]);
view
.iter_mut()
.enumerate()
.for_each(|(idx, int)| *int = idx as _);
std::thread::scope(|s| {
some_ints
.iter()
.enumerate()
.for_each(|(idx, int)| {
s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
})
});
Runsourcepub fn from_mut_slice(v: &mut [i64]) -> &mut [AtomicI64]
🔬This is a nightly-only experimental API. (atomic_from_mut
#76314)
pub fn from_mut_slice(v: &mut [i64]) -> &mut [AtomicI64]
atomic_from_mut
#76314)Get atomic access to a &mut [i64]
slice.
§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicI64, Ordering};
let mut some_ints = [0; 10];
let a = &*AtomicI64::from_mut_slice(&mut some_ints);
std::thread::scope(|s| {
for i in 0..a.len() {
s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
}
});
for (i, n) in some_ints.into_iter().enumerate() {
assert_eq!(i, n as usize);
}
Run1.34.0 (const: 1.79.0) · sourcepub const fn into_inner(self) -> i64
pub const fn into_inner(self) -> i64
1.34.0 · sourcepub fn load(&self, order: Ordering) -> i64
pub fn load(&self, order: Ordering) -> i64
Loads a value from the atomic integer.
load
takes an Ordering
argument which describes the memory ordering of this operation.
Possible values are SeqCst
, Acquire
and Relaxed
.
§Panics
Panics if order
is Release
or AcqRel
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let some_var = AtomicI64::new(5);
assert_eq!(some_var.load(Ordering::Relaxed), 5);
Run1.34.0 · sourcepub fn store(&self, val: i64, order: Ordering)
pub fn store(&self, val: i64, order: Ordering)
Stores a value into the atomic integer.
store
takes an Ordering
argument which describes the memory ordering of this operation.
Possible values are SeqCst
, Release
and Relaxed
.
§Panics
Panics if order
is Acquire
or AcqRel
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let some_var = AtomicI64::new(5);
some_var.store(10, Ordering::Relaxed);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
Run1.34.0 · sourcepub fn swap(&self, val: i64, order: Ordering) -> i64
pub fn swap(&self, val: i64, order: Ordering) -> i64
Stores a value into the atomic integer, returning the previous value.
swap
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let some_var = AtomicI64::new(5);
assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
Run1.34.0 · sourcepub fn compare_and_swap(&self, current: i64, new: i64, order: Ordering) -> i64
👎Deprecated since 1.50.0: Use compare_exchange
or compare_exchange_weak
instead
pub fn compare_and_swap(&self, current: i64, new: i64, order: Ordering) -> i64
compare_exchange
or compare_exchange_weak
insteadStores a value into the atomic integer if the current value is the same as
the current
value.
The return value is always the previous value. If it is equal to current
, then the
value was updated.
compare_and_swap
also takes an Ordering
argument which describes the memory
ordering of this operation. Notice that even when using AcqRel
, the operation
might fail and hence just perform an Acquire
load, but not have Release
semantics.
Using Acquire
makes the store part of this operation Relaxed
if it
happens, and using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Migrating to compare_exchange
and compare_exchange_weak
compare_and_swap
is equivalent to compare_exchange
with the following mapping for
memory orderings:
Original | Success | Failure |
---|---|---|
Relaxed | Relaxed | Relaxed |
Acquire | Acquire | Acquire |
Release | Release | Relaxed |
AcqRel | AcqRel | Acquire |
SeqCst | SeqCst | SeqCst |
compare_exchange_weak
is allowed to fail spuriously even when the comparison succeeds,
which allows the compiler to generate better assembly code when the compare and swap
is used in a loop.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let some_var = AtomicI64::new(5);
assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
Run1.34.0 · sourcepub fn compare_exchange(
&self,
current: i64,
new: i64,
success: Ordering,
failure: Ordering,
) -> Result<i64, i64>
pub fn compare_exchange( &self, current: i64, new: i64, success: Ordering, failure: Ordering, ) -> Result<i64, i64>
Stores a value into the atomic integer if the current value is the same as
the current
value.
The return value is a result indicating whether the new value was written and
containing the previous value. On success this value is guaranteed to be equal to
current
.
compare_exchange
takes two Ordering
arguments to describe the memory
ordering of this operation. success
describes the required ordering for the
read-modify-write operation that takes place if the comparison with current
succeeds.
failure
describes the required ordering for the load operation that takes place when
the comparison fails. Using Acquire
as success ordering makes the store part
of this operation Relaxed
, and using Release
makes the successful load
Relaxed
. The failure ordering can only be SeqCst
, Acquire
or Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let some_var = AtomicI64::new(5);
assert_eq!(some_var.compare_exchange(5, 10,
Ordering::Acquire,
Ordering::Relaxed),
Ok(5));
assert_eq!(some_var.load(Ordering::Relaxed), 10);
assert_eq!(some_var.compare_exchange(6, 12,
Ordering::SeqCst,
Ordering::Acquire),
Err(10));
assert_eq!(some_var.load(Ordering::Relaxed), 10);
Run1.34.0 · sourcepub fn compare_exchange_weak(
&self,
current: i64,
new: i64,
success: Ordering,
failure: Ordering,
) -> Result<i64, i64>
pub fn compare_exchange_weak( &self, current: i64, new: i64, success: Ordering, failure: Ordering, ) -> Result<i64, i64>
Stores a value into the atomic integer if the current value is the same as
the current
value.
Unlike AtomicI64::compare_exchange
,
this function is allowed to spuriously fail even
when the comparison succeeds, which can result in more efficient code on some
platforms. The return value is a result indicating whether the new value was
written and containing the previous value.
compare_exchange_weak
takes two Ordering
arguments to describe the memory
ordering of this operation. success
describes the required ordering for the
read-modify-write operation that takes place if the comparison with current
succeeds.
failure
describes the required ordering for the load operation that takes place when
the comparison fails. Using Acquire
as success ordering makes the store part
of this operation Relaxed
, and using Release
makes the successful load
Relaxed
. The failure ordering can only be SeqCst
, Acquire
or Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let val = AtomicI64::new(4);
let mut old = val.load(Ordering::Relaxed);
loop {
let new = old * 2;
match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
Ok(_) => break,
Err(x) => old = x,
}
}
Run1.34.0 · sourcepub fn fetch_add(&self, val: i64, order: Ordering) -> i64
pub fn fetch_add(&self, val: i64, order: Ordering) -> i64
Adds to the current value, returning the previous value.
This operation wraps around on overflow.
fetch_add
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let foo = AtomicI64::new(0);
assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
assert_eq!(foo.load(Ordering::SeqCst), 10);
Run1.34.0 · sourcepub fn fetch_sub(&self, val: i64, order: Ordering) -> i64
pub fn fetch_sub(&self, val: i64, order: Ordering) -> i64
Subtracts from the current value, returning the previous value.
This operation wraps around on overflow.
fetch_sub
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let foo = AtomicI64::new(20);
assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
assert_eq!(foo.load(Ordering::SeqCst), 10);
Run1.34.0 · sourcepub fn fetch_and(&self, val: i64, order: Ordering) -> i64
pub fn fetch_and(&self, val: i64, order: Ordering) -> i64
Bitwise “and” with the current value.
Performs a bitwise “and” operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_and
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let foo = AtomicI64::new(0b101101);
assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
Run1.34.0 · sourcepub fn fetch_nand(&self, val: i64, order: Ordering) -> i64
pub fn fetch_nand(&self, val: i64, order: Ordering) -> i64
Bitwise “nand” with the current value.
Performs a bitwise “nand” operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_nand
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let foo = AtomicI64::new(0x13);
assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
Run1.34.0 · sourcepub fn fetch_or(&self, val: i64, order: Ordering) -> i64
pub fn fetch_or(&self, val: i64, order: Ordering) -> i64
Bitwise “or” with the current value.
Performs a bitwise “or” operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_or
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let foo = AtomicI64::new(0b101101);
assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
Run1.34.0 · sourcepub fn fetch_xor(&self, val: i64, order: Ordering) -> i64
pub fn fetch_xor(&self, val: i64, order: Ordering) -> i64
Bitwise “xor” with the current value.
Performs a bitwise “xor” operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_xor
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let foo = AtomicI64::new(0b101101);
assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
Run1.45.0 · sourcepub fn fetch_update<F>(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: F,
) -> Result<i64, i64>
pub fn fetch_update<F>( &self, set_order: Ordering, fetch_order: Ordering, f: F, ) -> Result<i64, i64>
Fetches the value, and applies a function to it that returns an optional
new value. Returns a Result
of Ok(previous_value)
if the function returned Some(_)
, else
Err(previous_value)
.
Note: This may call the function multiple times if the value has been changed from other threads in
the meantime, as long as the function returns Some(_)
, but the function will have been applied
only once to the stored value.
fetch_update
takes two Ordering
arguments to describe the memory ordering of this operation.
The first describes the required ordering for when the operation finally succeeds while the second
describes the required ordering for loads. These correspond to the success and failure orderings of
AtomicI64::compare_exchange
respectively.
Using Acquire
as success ordering makes the store part
of this operation Relaxed
, and using Release
makes the final successful load
Relaxed
. The (failed) load ordering can only be SeqCst
, Acquire
or Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Considerations
This method is not magic; it is not provided by the hardware.
It is implemented in terms of
AtomicI64::compare_exchange_weak
,
and suffers from the same drawbacks.
In particular, this method will not circumvent the ABA Problem.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let x = AtomicI64::new(7);
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
assert_eq!(x.load(Ordering::SeqCst), 9);
Run1.45.0 · sourcepub fn fetch_max(&self, val: i64, order: Ordering) -> i64
pub fn fetch_max(&self, val: i64, order: Ordering) -> i64
Maximum with the current value.
Finds the maximum of the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_max
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let foo = AtomicI64::new(23);
assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
assert_eq!(foo.load(Ordering::SeqCst), 42);
RunIf you want to obtain the maximum value in one step, you can use the following:
use std::sync::atomic::{AtomicI64, Ordering};
let foo = AtomicI64::new(23);
let bar = 42;
let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
assert!(max_foo == 42);
Run1.45.0 · sourcepub fn fetch_min(&self, val: i64, order: Ordering) -> i64
pub fn fetch_min(&self, val: i64, order: Ordering) -> i64
Minimum with the current value.
Finds the minimum of the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
fetch_min
takes an Ordering
argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire
makes the store part of this operation Relaxed
, and
using Release
makes the load part Relaxed
.
Note: This method is only available on platforms that support atomic operations on
i64
.
§Examples
use std::sync::atomic::{AtomicI64, Ordering};
let foo = AtomicI64::new(23);
assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 23);
assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 22);
RunIf you want to obtain the minimum value in one step, you can use the following:
use std::sync::atomic::{AtomicI64, Ordering};
let foo = AtomicI64::new(23);
let bar = 12;
let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
assert_eq!(min_foo, 12);
Run1.70.0 (const: 1.70.0) · sourcepub const fn as_ptr(&self) -> *mut i64
pub const fn as_ptr(&self) -> *mut i64
Returns a mutable pointer to the underlying integer.
Doing non-atomic reads and writes on the resulting integer can be a data race.
This method is mostly useful for FFI, where the function signature may use
*mut i64
instead of &AtomicI64
.
Returning an *mut
pointer from a shared reference to this atomic is safe because the
atomic types work with interior mutability. All modifications of an atomic change the value
through a shared reference, and can do so safely as long as they use atomic operations. Any
use of the returned raw pointer requires an unsafe
block and still has to uphold the same
restriction: operations on it must be atomic.